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Abstract

Sea salt is the largest source of natural aerosol in the atmosphere by mass. Formed when ocean waves break and bubbles

burst, sea salt aerosols (SSA) influence Earth’s climate via direct and indirect processes. Models participating in the sixth

Coupled Model Intercomparison project (CMIP6) demonstrate a negative effective radiative forcing when SSA emissions are

doubled. However, the magnitude of the effective radiative forcing ranges widely from -0.35 +/- 0.04 W/mˆ2 to -2.28 +/-

0.07 W/mˆ2, with the largest difference over the Southern Ocean. Differences in the response to doubled SSA emissions arise

from model uncertainty (e.g. individual model physics, aerosol size distribution) and parameterization uncertainty (e.g. how

SSA is produced in the model). Here, we perform single-model experiments with UKESM1-AMIP incorporating all of the SSA

parameterizations used by the current generation of CMIP6 Earth system models. Using a fixed SSA size distribution, our

experiments show that the parameterization uncertainty causes large inter-model diversity in SSA emissions in the models,

particularly over the tropics and the Southern Ocean. The choice of parameterization influences the ambient aerosol size

distribution, cloud condensation nuclei and cloud droplet number concentrations, and therefore direct and indirect radiative

forcing. We recommend that modelling groups evaluate their SSA parameterizations and update them where necessary in

preparation for future model intercomparison activities
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Abstract19

Sea salt is the largest source of natural aerosol in the atmosphere by mass. Formed when20

ocean waves break and bubbles burst, sea salt aerosols (SSA) influence Earth’s climate21

via direct and indirect processes. Models participating in the sixth Coupled Model In-22

tercomparison project (CMIP6) demonstrate a negative effective radiative forcing when23

SSA emissions are doubled. However, the magnitude of the effective radiative forcing ranges24

widely from -0.35 ± 0.04 W m−2 to -2.28 ± 0.07 W m−2, with the largest difference over25

the Southern Ocean. Differences in the response to doubled SSA emissions arise from26

model uncertainty (e.g. individual model physics, aerosol size distribution) and param-27

eterization uncertainty (e.g. how SSA is produced in the model). Here, we perform single-28

model experiments with UKESM1-AMIP incorporating all of the SSA parameterizations29

used by the current generation of CMIP6 Earth system models. Using a fixed SSA size30

distribution, our experiments show that the parameterization uncertainty causes large31

inter-model diversity in SSA emissions in the models, particularly over the tropics and32

the Southern Ocean. The choice of parameterization influences the ambient aerosol size33

distribution, cloud condensation nuclei and cloud droplet number concentrations, and34

therefore direct and indirect radiative forcing. We recommend that modelling groups eval-35

uate their SSA parameterizations and update them where necessary in preparation for36

future model intercomparison activities.37

Plain Language Summary38

Sea salt aerosols (SSA) are the main source of natural aerosols in the Earth’s at-39

mosphere and are formed when waves break and bubbles burst at the ocean surface. SSA40

are important for Earth’s climate as they reduce the amount of sunlight reaching the sur-41

face by predominantly scattering light and seeding cloud formation. Therefore, SSA pro-42

duction is routinely included in Earth system models. Different models represent SSA43

production differently—some base it on the wind speed close to the ocean’s surface, while44

others include additional factors such as the sea surface temperature. Combined with45

differences in modelled meteorology, this means that Earth system models all produce46

different amounts of SSA at different locations. To date, no one has examined how the47

way sea salt aerosols are produced in the current generation of Earth system models cas-48

cades to other important processes in the climate system such as cloud formation. Here49

we use one model to test seven different representations of SSA. We show that the un-50

certainties associated with SSA production are large and that modelling groups should51

pay careful attention to the way their model produces sea salt aerosol for future model52

intercomparison efforts.53

1 Introduction54

Sea salt aerosols (SSA) are formed when waves break and bubbles burst at the ocean55

surface. Droplets of sea salt, combined with marine organic matter, are injected into the56

atmosphere as film, jet and spume droplets (Grythe et al., 2014). SSA influences the cli-57

mate system directly, by scattering sunlight, and indirectly, by seeding cloud formation58

which subsequently affects cloud lifetime and reflectivity, along with subsequent impacts59

on precipitation (Twomey, 1977; Murphy et al., 1998).60

Together with dust, SSA is a leading contributor of aerosol mass to the atmosphere61

(Grythe et al., 2014). However, there is low confidence in how SSA emissions may change62

in the future due to uncertainties in formation pathways and their response to increas-63

ing greenhouse gas concentrations (Szopa et al., 2021). Thornhill et al. (2021) evaluated64

the effective radiative forcing (ERF) from a doubling of SSA emissions in Earth system65

models (ESMs) participating in the sixth Climate Model Intercomparison Project (CMIP6,66

Eyring et al. (2016)). All of the models produced a negative ERF, indicating agreement67

that an increase in SSA leads to climate cooling. However, the magnitude of the ERF68

–2–



manuscript submitted to JGR:Atmospheres

varied widely, ranging between -0.35 ± 0.04 W m−2 to -2.28 ± 0.07 W m−2 (Thornhill69

et al., 2021). In addition, our analysis of SSA projections in the 21st century in CMIP670

models show a divergent response, particularly under the high greenhouse gas emissions71

scenario Shared Socioeconomic Pathways (SSP) 5-8.5 (Figure 1). Models that include72

SST in their SSA parameterization such as GFDL-ESM4, CNRM-ESM2 and CESM2-73

WACCM show a ≈20–25% increase in global-mean SSA production through the 21st cen-74

tury, while those that rely on wind speed alone show smaller increases of ≈3–5% (e.g.75

UKESM1).76

SSA production is affected by wind speed, wave state, sea surface temperature (SST),77

salinity, viscosity, sea ice cover and the presence of organic material in seawater (Grythe78

et al., 2014; Song et al., 2023). Parameterizations of SSA production in ESMs are typ-79

ically based on near-surface wind speed, which influences wave state (S. Gong, 2003; Mon-80

ahan & Mac Niocaill, 1986). Some parameterizations additionally include a SST term81

to ameliorate underestimated aerosol optical depth (AOD) in the tropics (Jaeglé et al.,82

2011; Salter et al., 2015; Grythe et al., 2014; Mårtensson et al., 2003). The parameter-83

izations are typically based on whitecap methods (which assume that the area of the ocean84

covered with whitecaps is indicative of SSA production) and empirical fits to observa-85

tions, or laboratory studies (Monahan & Mac Niocaill, 1986; S. Gong, 2003; Salter et al.,86

2015; Grythe et al., 2014).87

The ESMs participating in CMIP6 use various parameterizations to represent SSA88

production (Lapere et al., 2023), which could explain the large variation in ERF when89

SSA emissions were doubled (Thornhill et al., 2021) and the divergent projections shown90

under SSP5-8.5 in Figure 1. Other differences could arise from how winds, SST and sea91

ice cover are represented, as these factors influence SSA production (Song et al., 2023).92

Or, differences could arise from the assumed aerosol size distribution and maximum par-93

ticle cut-off diameters (Lapere et al., 2023). In an investigation of the performance of94

CMIP6 models in simulating SSA emissions in polar regions, Lapere et al. (2023) per-95

formed offline calculations to predict SSA mass fluxes. They showed that for a constant96

wind speed, SST and maximum particle size, the choice of SSA flux parameterization97

induced a large uncertainty in the SSA mass flux ranging over an order of magnitude or98

more.99

Here, we performed ESM simulations with specified dynamics (nudging) to inves-100

tigate uncertainties resulting from the choice of SSA parameterization. We tested seven101

SSA parameterizations, all used by present-day Earth system models (Section 2) in the102

atmosphere-only configuration of the United Kingdom Earth System Model (UKESM1-103

AMIP; Sellar et al. (2019)). We then examined how SSA parameterization uncertainty104

cascades to uncertainty in SSA emission, cloud microphysics and radiative forcing. The105

novelty of our approach lies in the use of a single ESM with fixed meteorology and con-106

sistent SSA treatment (e.g. SSA density, optical properties, size distribution) and han-107

dling of aerosol-cloud interactions. This allows the sensitivity of ERF to the choice of108

SSA emissions parameterization to be elucidated, which cannot be done via CMIP6-type109

model intercomparison projects.110

2 Methods111

112

2.1 Model description113

Simulations were performed using UKESM1-AMIP (Sellar et al., 2019). UKESM1-114

AMIP has a horizontal grid resolution of 1.25◦ × 1.875◦. The atmosphere contains 85115

unevenly spaced levels extending to 85 km above the surface. Aerosol evolution, growth116

and deposition are handled by the Global Model of Aerosol Processes (GLOMAP; Mulcahy117
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et al. (2020)). GLOMAP is a two-moment modal aerosol microphysics scheme which sim-118

ulates the mass and number concentration of sea salt, SO4
2−, black carbon and organic119

aerosol (Mulcahy et al., 2020). Mineral dust is represented separately using a bin emis-120

sion scheme (Woodward, 2001). GLOMAP simulates aerosol species across five log-normal121

size modes: a soluble nucleation mode with geometric mean dry radius 0.5–5 nm, a sol-122

uble and insoluble Aitken mode, both spanning 5–50 nm, a soluble accumulation mode123

(50–250 nm) and a soluble coarse mode (250–5000 nm). By default, SSA fluxes are pa-124

rameterized using the formulation of S. Gong (2003) (Table 1 and Table 2) and SSA is125

mapped into the accumulation and coarse modes (maximum cut-off size–5000 nm). SSA126

is assumed to originate only from the ocean surface; SSA from blowing snow is not rep-127

resented (e.g. X. Gong et al. (2023)).128

2.2 Simulation description129

Simulations were run for a period of 18 months, from December 2004 to May 2006.130

The first six months were discarded as spin-up and we focus our analysis on the 12 months131

spanning June 2005 to May 2006. Wind speed (u, v) and temperature were nudged to132

6-hourly reanalysis data as described by Telford et al. (2008). Fifth generation ECMWF133

(ERA-5) reanalysis data were used for nudging (Hersbach et al., 2020). Nudging was ap-134

plied to ensure that wind speeds, which drive SSA production, were consistently repre-135

sented across all simulations. While nudging to temperature can produce less accurate136

simulations of clouds and precipitation (Sun et al., 2019), we applied it here to ensure137

that the simulations were as consistent as possible with each other. SST and sea ice con-138

centrations were prescribed from Hadley Centre Global Sea Ice and Sea Surface Tem-139

perature data (Titchner & Rayner, 2014).140

2.3 Sensitivity simulations141

Seven simulations were performed, each using one of the SSA parameterizations142

shown in Tables 1 and 2. While numerous parameterizations for SSA production exist143

(Grythe et al., 2014), these seven were selected because they are used by ESMs partic-144

ipating in CMIP6 (Thornhill et al., 2021). The parameterizations typically assume that145

the flux of SSA has a power law dependence on the near-surface (10 m) wind speed. For146

the parameterizations of S. Gong (2003) (hereafter ‘G03’) and Monahan and Mac Nio-147

caill (1986) (‘MO86’), wind speed is the only driver of SSA production. The parameter-148

izations of Salter et al. (2015) (‘SA15’), Jaeglé et al. (2011) (‘JA11’), Grythe et al. (2014)149

(‘GR14’) and Mårtensson et al. (2003) (‘MA03’) also include SST. The JA11 parame-150

terization was developed to reconcile biases between models and observations in the trop-151

ics, where wind speeds are typically low and the surface ocean is warm (Jaeglé et al., 2011).152

It has since been incorporated alongside other parameterizations, such as MO86 to be153

used in the GFDL-ESM4 model (Table 1 and Table 2). Although the JA11 parameter-154

ization wasn’t used by any of the CMIP6 models, we include it here as it has been found155

to compare favourably with observations (Revell et al., 2021).156

For each simulation we examined the SSA mass mixing ratio, 550 nm AOD, cloud157

condensation nuclei (CCN) concentration, cloud droplet number concentration (Nd) and158

changes in radiative forcing (∆RF). Here ∆RF is defined as the difference in the top-159

of-atmosphere net radiation relative to the G03 simulation, which represents the default160

SSA parameterization in UKESM1. As discussed earlier, the size range remains fixed in161

all the simulations (0–5000 nm in terms of particle dry radius). The SSA emitted in each162

of the parameterizations are mapped only into the accumulation and coarse modes and163

the separation depends on whether the particle radius is below or above of the upper-164

limit of accumulation mode in UKESM1-AMIP (250 nm).165
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Table 1: SSA parameterizations implemented in UKESM1-AMIP sensitivity simulations.
Details of the parameterizations are given in Table 2.

CMIP6 model SSA parameterization SSA driver(s)

UKESM1 S. Gong (2003) [G03] wind speed

MIROC-ES2L, GISS Monahan and Mac Niocaill (1986) [MO86] wind speed

GFDL-ESM4 Monahan and Mac Niocaill (1986) & wind speed, SST

Jaeglé et al. (2011) [MJ11]

NorESM2 Salter et al. (2015) [SA15] wind speed, SST

CNRM-ESM2 Grythe et al. (2014) [GR14] wind speed, SST

CESM2-WACCM Mårtensson et al. (2003) [MA03] wind speed, SST

This study S. Gong (2003) & wind speed, SST

Jaeglé et al. (2011) [JA11]

Table 2: SSA parameterizations

SSA parameterization

a G03 1.373u3.41
10 r−A(1 + 0.057r3.45101.607e

−B2

)

MO86 1.373u3.41
10 r−3(1 + 0.057r1.05101.19e

−B2

)

bMJ11 (0.3 + 0.1SST − 0.0076SST 2 + 0.00021SST 3) (1.373u3.41
10 r−3(1 + 0.057r1.05101.19e

−B2

)
c∗SA15 Fent(u10)

(Ai.SST
3 +Bi.SST

2 + Ci.SST +Di)
dGR14 (0.3 + 0.1SST − 0.0076SST 2 + 0.00021SST 3) (235u3.5

10 exp(−0.55[ln(Dp/0.1)]
2)

+(0.2u3.5
10 exp(−1.5[ln(Dp/3)]

2) +(6.8u3
10exp(−1[ln(Dp/30)]

2)
e∗MA03 (Ak.SST +Bk).W , for Dp≤ 2.8 µm

Dp≥ 2.8 µm,1.373u3.41
10 r−3(1 + 0.057r1.05101.19e

−B2

)

JA11 (0.3 + 0.1SST − 0.0076SST 2 + 0.00021SST 3) 1.373u3.41
10 r−A(1 + 0.057r3.45101.607e

−B2

)

ar is the particle radius at 80% relative humidity. u10 is the windspeed at the height of 10 m

A = 4.7(1 + θr)−0.017r−1.44

and B = 0.433− log(r)0.433, where θ is the an adjustable parameter

to control the SSA size distribution.
b SST is sea-surface temperature.
c Fent(u10)

is the volume of air entrained as per unit area per unit time as a function of u10

and is given by: Fent(u10)
= 2(±1)10−8u3.41

10

A, B and C are polynomial coefficients for the number flux of each of the three modes.
d Dp is the dry particle diameter.
e W is the white cap area and is given by: 3.84× 10−4u3.41

10

Ak and Bk are co-efficients of parameterization dependent on the size interval.
∗ Further details on the co-efficients are given in Table S1 and Table S2
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2.4 Observations166

Simulated AOD is compared to daily AOD retrieved from Moderate Resolution Imag-167

ing Spectroradiometer (MODIS)-Aqua measurements at 550 nm (Sayer et al., 2014). Aqua168

measurements are available from 2002 and we choose the data for the year 2005 to com-169

pare with the simulations. We also note that the period between 2003-2007 was volcani-170

cally quiescent, making the contribution of volcanic aerosol towards the total aerosol bur-171

den insignificant. Datasets used here are retrieved from combined deep blue (land re-172

trieval only) and dark target (combined land and ocean) algorithms and have a spatial173

resolution of 1◦ × 1◦. Simulated Nd is also compared with Nd retrieved from MODIS174

measurements (Grosvenor et al., 2018). Land regions were masked during the analysis175

for both the AOD and Nd datasets. SSA data from the Southern Ocean are limited, es-176

pecially in terms of long-running time series. We compared simulated SSA mixing ra-177

tios to measurements made at the Cape Grim Baseline Air Pollution Station at Kennaook/Cape178

Grim (40.38◦S, 144.4◦E) Australia, which is one of the few data sets available in the South-179

ern Ocean region spanning more than a few months.180

3 Results and discussion181

182

3.1 Impact of SSA parameterizations on sea salt aerosol concentrations183

184

Figure 2 shows annual-mean SSA mixing ratios in the sensitivity simulations with185

the different SSA parameterizations described in Table 1. The mean SSA mass mixing186

ratio exhibits higher values over the Southern Ocean and in the tropics, most likely fa-187

cilitated by favourable physical conditions such as higher wind speeds and SSTs, respec-188

tively (Figure 2a; Grythe et al. (2014); Liu et al. (2021); Jaeglé et al. (2011). Further-189

more, the largest variability is seen in these same regions (Figure 2b). Overall, we find190

that the global average pooled standard deviation (6.10 × 10−9 kg kg−1) is around 80%191

of the ensemble mean (7.60 × 10−9 kg kg−1). Because our simulations all use the same192

nudged UKESM1-AMIP configuration, we can attribute the large standard deviation in193

SSA mass mixing ratio to the SSA parameterizations rather than differences in model194

physics such the aerosol scheme (bin vs. modal), maximum cut-off diameter, or mete-195

orological factors that influence SSA emission such as wind speed, SST and sea ice cover.196

To gain an understanding of which simulations, if any, compare well to observa-197

tions, we compared SSA mass mixing ratios to measurements from the Cape Grim Base-198

line Air Pollution Station at Kennaook/Cape Grim (40.38◦S, 144.4◦E) Australia (Fig-199

ure 3a). In addition to the data availability during the simulation period, this station200

was chosen due to its proximity to the Southern Ocean where some of the highest SSA201

concentrations and highest variability are found due to the dominance of south-westerly202

flow at the site (Jiang et al., 2021; Heintzenberg et al., 2000). Observed SSA mass mix-203

ing ratios vary between ≈ 10–15 × 10−9 kg kg−1, whereas there is substantially larger204

variability across the UKESM1-AMIP simulations with different parameterizations (≈ 0–205

30 × 10−9 kg kg−1). The parameterizations that give the best agreement with the ob-206

servations are JA11 and MO86 (Figure 3a). In contrast, the model under-predicts SSA207

mass mixing ratio to the greatest extent with SA15 and MA03, while it over-predicts SSA208

mass mixing ratio to the greatest extent with GR14. As discussed by Grythe et al. (2014),209

GR14 has a higher windspeed dependency in its parameterization compared to the rest210

(e.g. u3.5 in GR14 vs. u3.45 in G03) which is likely contributing to higher SSA produc-211

tion. We attribute under-prediction of SSA mass mixing ratios in the SA15 simulation212

to the application of the source function to specific modal diameters (0.95, 0.6 and 1.5213

µm) unlike most other parameterizations that addresses the whole the size distribution214
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(Table 2 and Table S1). In addition, Salter et al. (2015) also notes uncertainty in wind-215

speed dependency in the parameterization (u3.41 vs. u3.74). These factors may have con-216

tributed to the parameterization of SA15 not effectively simulating SSA emission when217

implemented within UKESM1. Similarly, the parameterization of MA03 involves a com-218

bination of parameterizations (e.g. (AkSST+Bk)W for diameter < 2.5 µm and MO86219

for diameter > 2.5 µm) (Table 2) and usage of different co-efficients for different size220

ranges within the parameterization of (AkSST +Bk)W (Table S1). W in the param-221

eterization represents the white cap area and Ak and Bk are the co-efficients dependent222

on the size interval. SSA emissions from the MA03 parameterization implemented in UKESM1223

are minimal, and occur predominantly in the accumulation mode (section 3.1).224

AOD is the integral of the extinction co-efficient of aerosols in a column air and225

reflects the total aerosol content within that column. In the marine atmosphere sulfate226

aerosol, dust and SSA contribute to AOD; the dominant contributor is SSA(Quinn &227

Bates, 2014; Bates et al., 2006). The global mean AOD diverges across the UKESM1-228

AMIP simulations above wind speeds of 6 m s−1(Figure 3b). At wind speeds of 20 m s−1
229

simulated AOD varies between 0.01 ± 0.005 and 0.4 ± 0.05 (Figure 3b). As the wind230

speed increases above ≈ 6 m s−1 AOD also increases in most of the simulations. It is231

known that most of the wave breaking processes and consequent bubble generation oc-232

curs when the wind speed exceeds ≈ 5 m s−1(Grythe et al., 2014). The increase in AOD233

beyond this wind speed threshold of ≈ 6 m s−1 reflects accelerated SSA generation. How-234

ever, the simulations using the JA11, MO86, MA03, G03 and GR14 parameterizations235

have a higher sensitivity to wind speed than indicated by observations and over-predict236

AOD above the threshold of 6 m s−1 both globally and during the austral winter (June,237

July, August; JJA) (Figure 3b-c). This was also reported by Revell et al. (2019), who238

found the G03 parameterization implemented in HadGEM3-GA7.1, a predecessor of UKESM1-239

AMIP, overestimated wintertime AOD over the Southern Ocean at high wind speeds.240

This reflects the over-dependence of SSA emissions on wind speed in these parameter-241

izations (Revell et al., 2019). On the other hand, the SA15 parameterization under-predicts242

AOD to the greatest extent globally, and over the Southern Ocean, and is unable to rep-243

resent increasing AOD above wind speeds of 6 m s−1. This is due to SA15 having too244

low SSA emissions as discussed above. Figures 3b–c show that the observed AOD is best245

captured by the UKESM-AMIP simulations with the JA11 and MJ11 parameterizations,246

which are the parameterizations of G03 and MO86 scaled with a SST factor proposed247

by Jaeglé et al. (2011).248

While the parameterizations of G03 and MO86 are only wind speed dependent, the249

parameterizations of JA11, MA03, SA15, GR14 and MJ11 also have SST influencing SSA250

production. SSA production increases with increasing SST in the JA11, GR14 and MA03251

parameterizations, but decreases with increasing SST in the SA15 parameterization (Salter252

et al., 2015; Lapere et al., 2023). Observations suggest that the overall production of SSA253

increases with increasing SST (Liu et al., 2021). However, laboratory experiments pro-254

duce complex and inconclusive results (Song et al., 2023; Grythe et al., 2014). Christiansen255

et al. (2019) show that the concentration of SSA produced can change with changes to256

the instrumental set-up as it would result in different rates of air entrainment. They showed257

that when using a diffuser to generate air bubbles, SSA concentrations decreased linearly258

when temperature increased from −2 ◦C to 35 ◦C, which approximately encompasses259

the global ocean temperature range. Using a plunging jet resulted in reduced produc-260

tion of SSA with increasing temperature until 10 ◦C and an increase thereafter. A pre-261

vious study by Salter et al. (2015) also showed a non-linear decrease in the SSA concen-262

tration for the temperature range between −1 ◦C to 30 ◦C. Our results show that un-263

derstanding the precise effect of SST on SSA emissions is vital to reducing aerosol un-264

certainty associated with parameterizations.265
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In the following sections, we assess how each of the SSA parameterizations affects266

the aerosol number size distribution, cloud microphysics and finally the impact on ra-267

diative forcing.268

3.2 Aerosol size distribution and cloud microphysics269

Figure 4a shows the global-mean aerosol number size distribution for UKESM1-270

AMIP sensitivity simulations. The size distribution provides information on how aerosol271

number concentrations are distributed across various size modes (in UKESM1 these are272

the nucleation, Aitken, accumulation and coarse modes, see Section 2). The nucleation273

mode is characterized by the formation of new particles by the condensation of gas-phase274

species on their own (homogeneous nucleation) or in the presence of pre-existing parti-275

cles (heterogeneous nucleation) (Chin & Kahn, 2009). These newly-formed particles can276

coagulate (forming the Aitken mode) and when the particles grow further either through277

condensation of vapours onto their surface or coagulation, the accumulation mode forms278

(Chin & Kahn, 2009). The coarse mode is associated with mechanical processes such as279

bubble bursting to form SSA, and emission of other primary particles, such as dust (Chin280

& Kahn, 2009). In UKESM1, sea-salt is emitted in to both the accumulation and coarse281

modes.282

As shown in Figure 4a, the coarse mode is not present in the simulations using the283

SA15 and MA03 parameterizations. While all the other parameterizations consist of a284

single SSA source function across the entire size range considered (0.005 µm–5 µm in ra-285

dius), the parameterization of SA15 and MA03 contain different source functions or dif-286

ferent co-efficients for particles with different diameters in the source function(Salter et287

al., 2015; Mårtensson et al., 2003). This appears to affect the aerosol partitioning into288

the different modes in the simulations using these parameterizations. In the case of the289

accumulation mode, we note that the simulations that used the MO86, MJ11 and MA03290

parameterizations (Figure 3a) had higher accumulation mode aerosol number concen-291

trations. Because aerosols >0.05 µm are likely to be activated as CCN (Rose et al., 2017)292

(which corresponds to the accumulation and coarse modes in UKESM1), this indicates293

that the choice of SSA parameterization can influence cloud formation.294

To better understand the impact of various SSA parameterizations on cloud mi-295

crophysical properties, we now examine the concentration of CCN and Nd (Figure 4a296

and b). CCN is an indicator for the potential to form cloud droplets at the top of the297

cloud (approximately 800 m), whereas Nd is the actual number of droplets formed at the298

cloud base. The parameterizations of MO86, MJ11 and MA03 show higher concentra-299

tions of CCN in comparison to other parameterizations (on average between 270 cm−3
300

and 310 cm−3; Figure 4c), with MO86 exhibiting the highest concentrations. Examin-301

ing Nd, it is interesting to note that the parameterization of MA03 shows the highest302

concentration, followed by MO86 and MJ11. Nd is driven by factors such as cloud up-303

draft velocity, wind shear, supersaturation, and CCN concentration (Rosenfeld et al., 2019).304

In turn, CCN concentrations are affected by the size distribution. The simulation using305

the MA03 parameterization contains larger accumulation mode particles compared to306

the simulations that use MO86 and MJ11 (Figure 4a). Hence, MA03 has more poten-307

tial to form cloud droplets. As the simulations are nudged and the meteorology is con-308

sistent across all the simulations, it is likely that this difference in size distribution is the309

reason for the higher Nd values in the simulation with the MA03 parameterization. The310

remaining parameterizations of G03, GR14, JA11 and SA15 produce similar concentra-311

tions of Nd. Comparison with the MODIS Nd (Grosvenor et al., 2018) indicates that these312

four parameterizations are closer to the observations, at least between November - May,313

but that all the parameterizations are unable to capture Nd from June until October.314

The calculation of Nd is based on optical depth and effective radius from MODIS mea-315

surements and assumes that (i) the concentration of the droplet in the cloud is constant316

vertically and (ii) the liquid water content of the cloud increases linearly with cloud height317
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(Grosvenor et al., 2018). Both assumptions are not applicable to all types of clouds and318

are mostly valid only for stratocumulous clouds (Grosvenor et al., 2018). In addition,319

MODIS Nd is known to be more uncertain over the regions with less cloud cover, such320

as ocean regions. Thus, it is necessary to be cautious in validating Nd from simulations321

with MODIS Nd.322

We also examined spatial variability in CCN and Nd to understand which regions323

are most sensitive to SSA parameterization. Figure 5a shows that simulated CCN was324

most variable over the Southern Ocean, followed by the tropics, mirroring the changes325

seen in the SSA mixing ratio (Figure 2b). Interestingly, Nd, unlike CCN, was only vari-326

able over the Southern Ocean. The under-estimation of Nd over the Southern Ocean is327

a long-standing problem in climate and Earth system models (McCoy et al., 2020). McCoy328

et al. (2020) suggest that this underestimation of Nd could be a result of too little and329

too inefficient CCN production. The sensitivity of Nd towards SSA parameterizations330

in our analysis indicates that improved representation of SSA emission can also be im-331

portant for addressing the model bias in Nd over the Southern Ocean. This is consis-332

tent with the findings from Revell et al. (2019). The reduced variability observed in Nd333

over the tropics could be from oversaturation in Nd as droplets are formed both from334

both natural and anthropogenic emissions, and/or from a strong sink due to elevated hu-335

midity, temperature and tropical convection.336

3.3 Impact of SSA parameterizations on radiative forcing337

338

Given that the choice of SSA parameterization affects the aerosol number size dis-339

tribution, CCN concentration and Nd concentration (Figure 4b), we expect radiative forc-340

ing (RF) to be affected too. We calculated the difference in all-sky, clear-sky and cloudy-341

sky radiative forcing relative to the G03 simulation (∆RF), which represents the default342

parameterization in UKESM1-AMIP. A positive ∆RF indicates relative warming com-343

pared to the G03 simulation due to an increase in incoming (solar) radiation or a decrease344

in outgoing (terrestrial) radiation, and vice-versa for a negative ∆RF. We find that the345

Southern Ocean region has large variability in CCN, Nd, clear-sky RF and cloudy-sky346

RF, while the tropics have large variability in CCN and clear-sky RF (Figure 5), match-347

ing the regions where there is large variability in SSA mass mixing ratios (see Figure 2).348

Thus, we infer that the choice of parameterization can influence direct and indirect SSA349

radiative effects and may contribute to the inter-model diversity in radiative forcing in350

CMIP6 models, as noted by Thornhill et al. (2021).351

Table 3 shows the all-sky, clear-sky and cloudy sky ∆RF for each SSA parameter-352

ization. We find that the net all-sky ∆RF varies from +2.69 W m−2 (SA15 minus G03)353

to -2.66 W m−2 (MA03 minus G03), demonstrating that changing the SSA parameter-354

ization in UKESM1-AMIP can have an overall warming or cooling impact relative to the355

default G03 parameterization. In general, positive clear-sky ∆RF values were associated356

with low SSA mass mixing ratios and therefore low AOD, for example when the SA15357

and MJ11 parameterizations are implemented in UKESM1-AMIP. As the aerosol bur-358

den is lower, more radiation is able to reach the surface, thus leading to warming. In con-359

trast, the negative clear-sky ∆RF values occurred when AOD was relatively high (see360

the GR14 parameterization in Figure 3b), causing incoming solar radiation to be reflected361

and scattered to a greater extent than in G03. In the case of GR14, this is due to high362

SSA mass mixing ratios.363

Positive cloudy-sky ∆RF is associated with reduced SSA in the accumulation mode364

and therefore lower CCN and Nd compared with UKESM1-AMIP-G03. This occurred365

with the JA11, SA15 and GR14 parameterizations. Generally, the reduction in cloud cover366

increases the solar radiation reaching the surface causing the surface to warm. In the UKESM1-367

AMIP simulations where cloudy-sky ∆RF are negative, such as MO86, MJ11 and MA04,368
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Table 3: Change in the global- annual-mean radiative forcing (∆RF) with respect to the
default UKESM1-AMIP SSA parameterization, G03.

Difference All-sky Clear-sky Cloudy-sky

JA11-G03 0.43 (2.16%) 0.04 (0.56%) 0.38 (1.41%)

MO86-G03 -2.24 (-11.24%) -0.03 (-0.42%) -2.21 (-8.05%)

MJ11-G03 -1.41 (-7.08%) 0.61 (8.14%) -2.02 (-7.37%)

SA15-G03 2.69 (13.47%) 1.49 (19.85%) 1.19 (4.35%)

GR14-G03 -0.30 (-1.50%) -1.06 (-14.21%) 0.76 (2.79%)

MA03-G03 -2.66 (-13.39%) 0.16 (2.11%) -2.83 (-10.30%)

SSA in the accumulation mode increased relative to G03, resulting in higher CCN and369

Nd values.370

The largest all-sky ∆RF values, positive or negative, occurred when the clear-sky371

and cloudy ∆RF values were additive/complementing. For example, in the SA15 sim-372

ulation, the combination of low AOD, and CCN and Nd concentrations compared with373

G03, had a substantial warming impact (∆RF = +2.69 W m−2, see Table 3), while the374

high AOD, CCN and Nd in the MA03 simulation had a substantial cooling impact (∆RF375

= -2.66 W m−2, see Table 3). In contrast, opposing signs for the clear-sky and cloudy-376

sky ∆RF reduced the overall impact on ∆RF, such as in the simulations that used the377

MJ11 and GR14 parameterizations. In the case of GR14, despite having higher SSA mass378

mixing ratio, and thus AOD, compared to G03, the distribution of SSA, particularly in379

the accumulation mode is not very different to G03, thus minimizing the impact of higher380

clear-sky RF. Whereas in MJ11, the opposite happens: the pronounced cooling effect from381

higher cloudy-sky RF is reduced by the warming from lower clear-sky RF, as the emis-382

sion of SSA is lower in MJ11 when compared to G03. In summary we find that the com-383

bined changes in AOD and cloud microphysics, and their consequent impacts on clear-384

sky and cloudy-sky ∆RF, is important to the overall impact on all-sky ∆RF.385

3.4 Optimal SSA parameterization for UKESM1-AMIP386

387

Revell et al. (2019) have shown that, compared to observations, the G03 param-388

eterization for SSA in UKESM1 overestimates SSA production over the Southern Ocean,389

in agreement with our findings (Figure 3b). Comparison with observations of SSA from390

a region of maximum varibility (Cape Grim/Southern Ocean) and with AOD over the391

global ocean (a potential index for SSA concentration globally) show that the JA11 and392

MJ11 parameterizations are best able to capture SSA mass mixing ratios and AOD (Fig-393

ure 3b). Further, JA11 does not alter the aerosol size distribution or cloud microphysics394

such that the radiative forcing is substantially changed compared to G03. In contrast,395

the MJ11 parameterization, which combines MO86 and JA11 (Section 3.2), exacerbates396

the overprediction of Nd in UKESM1-AMIP because MO86 over-produces SSA for the397

size < 0.2 µm (S. Gong, 2003). For this reason the MO86 parameterization was replaced398

by G03 in UKESM1 (S. Gong, 2003; Mulcahy et al., 2020).399

While we remain mindful of the unresolved impact of SST on SSA emissions we400

suggest that the JA11 parameterization improves the simulation of SSA in UKESM1-401

AMIP and will help to improve the model’s representation of aerosol over the Southern402
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Ocean. In the context of on-going and future warming, a parameterization with an SST403

component is likely to be better positioned to reflect changes in SSA emission, initiate404

and respond to climate feedbacks, and drive better understanding of the climate impacts.405

We also note that the magnitude and the uncertainty in the simulated variables (SSA406

mass mixing ratio, AOD, CCN, Nd) in UKESM1-AMIP simulations are not absolute and407

are likely to differ when implemented in other models. This also means the parameter-408

izations that didn’t simulate SSA well in UKESM1 (e.g SA15), may perform better when409

used in their ’native’ models.410

4 Summary and Outlook411

In this study, we implemented seven different SSA parameterizations that have been412

used in CMIP6 models into UKESM1-AMIP. In performing simulations with these SSA413

parameterizations using a uniform model set-up, we have quantified inter-model variabil-414

ity in radiative forcing due to SSA emission parameterization.415

The choice of SSA parameterization influenced both clear-sky and cloud-sky ra-416

diative forcing over the Southern Ocean, while tropical regions were only sensitive to clear-417

sky radiative changes as the changes in Nd were minimal over the tropics. This may be418

due to oversaturation in Nd in the tropics as droplets are formed from both natural and419

anthropogenic emissions in this region, and/or because there is a strong sink due to el-420

evated humidity, temperature and tropical convection. Our analysis illustrates the cas-421

cading effects of SSA mass mixing ratio on aerosol number size distribution, CCN con-422

centration, Nd and ultimately radiative forcing. We find that the choice of parameter-423

ization influences radiative forcing directly, by driving how much SSA is emitted, and424

indirectly by affecting the aerosol size distribution. Importantly, it is the balance between425

the amount of SSA emitted and how much is partitioned to the accumulation mode that426

controls the overall impact on RF. Our study also shows that the G03 SSA parameter-427

ization currently used in UKESM1 overproduces sea-salt and we recommend combining428

it with the SST source function of Jaeglé et al. (2011).429

Because SSA is a large source of natural aerosol over the Southern Ocean, constrain-430

ing the uncertainty associated with SSA emission parameterization in climate and Earth431

system models is extremely important for constraining uncertainty in aerosol radiative432

forcing and more confidently predicting how our climate will change in the future. This433

is particularly true in the Southern Ocean where SSA is the dominant aerosol compo-434

nent and where aerosol-climate interactions are highly uncertain, (McCoy et al., 2020;435

Revell et al., 2019, 2021), limiting our ability to understand how this vast region will re-436

spond to and drive climate change.437

5 Open Research438

MODIS AOD data were accessed via the Giovanni online data system, developed439

and maintained by the NASA GES DISC (https://giovanni.gsfc.nasa.gov). Nd data440

were obtained from the Centre for Environmental Data Analysis(https://data.ceda441

.ac.uk/badc/deposited2018/Grosvenor/ modis/ droplet/ conc). ERA-5 data were442

obtained from the European Centre for Medium-Range Weather Forecasts (https://443

cds.climate.copernicus.eu). CMIP6 data were accessed through Earth System Grid444

Federation (ESGF) repository (https://esgf-node.llnl.gov), and via Danabasoglu445

(2019a), Seferian (2018), Seland et al. (2019a), Hajima et al. (2019), Tang et al. (2019), Krasting446

et al. (2018), John et al. (2018), Seland et al. (2019b), Tachiiri et al. (2019), Good et al.447

(2019), Danabasoglu (2019b), and Voldoire (2019).448
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Supplementary Information624

Table S1: Co-efficients and size interval for the parameterization of SA15.

Modal diameter (µm) Ai Bi Ci Di

0.095 −5.2168× 105 3.31725× 108 −6.95275× 108 1.0684× 1010

0.6 0 7.37× 105 −2.4803× 107 7.7373× 108

1.5 0 1.4210× 104 1.4662× 107 1.7075× 108
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Table S2: Co-efficients for the parameterization MA03 for three size intervals.

Dp (µm) c4 c3 c2 c1 c0

0.02-0.145 −2.576× 1035 5.932× 1028 −2.867× 1021 −3.003× 1013 −2.881× 106

0.145-0.419 −2.452× 1033 −2.404× 1027 −8.148× 1020 1.183× 1014 −6.743× 106

0.419-2.8 1.085× 1029 −9.841× 1023 3.132× 1018 −4.165× 1012 2.181× 106

Size interval (µm) d4 d3 d2 d1 d0

0.02-0.145 7.188× 1037 −1.616× 1031 6.791× 1023 1.829× 1016 7.609× 108

0.145-0.419 7.368× 1035 −7.310× 1029 2.528× 1023 −3.787× 1016 2.279× 109

0.419-2.8 −2.859× 1031 2.601× 1026 −8.297× 1020 1.105× 1015 −5.800× 108

∗Ak = c4 − c0 and Bk = d4 − d0
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Figure 1: Change in global mean near-surface SSA mass mixing ratio relative to the
2015-2014 average under the Shared Socioeconomic Pathways (SSP) in CMIP6 Earth
system models (quantified for this study): GFDL-ESM4 (John et al., 2018), NorESM2
(Seland et al., 2019b), MIROC-ES2L (Tachiiri et al., 2019), CNRM-ESM2 (Voldoire,
2019), CESM2-WACCM (Danabasoglu, 2019b) and UKESM1 (Good et al., 2019). a)
Global means, b) SSP1-2.6 (low emission), c) SSP2-4.5 (medium emission), d) SSP5-8.5
(high emission).

–18–



manuscript submitted to JGR:Atmospheres

Figure 2: Near-surface annual-mean SSA mass mixing ratios in seven UKESM1-AMIP
sensitivity simulations using the SSA parameterizations described in Table 1. (a) Ensem-
ble mean; (b) Pooled standard deviation. The values in the titles indicate global average
quantities in 10−9 kg kg−1.
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Figure 3: a) Comparison of observations with UKESM1-AMIP sensitivity simulations.
(a) Near-surface SSA mixing ratio measured at Cape Grim (40.38◦S, 144.4◦E) compared
to simulations. (b) AOD–wind speed relationship in simulations compared to MODIS
AOD and ERA-5 windspeed (global). (c) As for (b) but for the Southern Ocean (40◦S-
60◦S) during austral winter (June, July, August; JJA). Daily averages of AOD were
matched to 10 m windspeed for ocean grid cells. These values were then sorted to dis-
cretized 1 m s−1 bins and the mean AOD in each bin was calculated. Error bars indicate
the standard deviation of AOD values present in each of the bin. Cape Grim SSA mixing
ratio data are not available for May, June and July. ERA-5 windspeed for JJA over the
Southern Ocean doesn’t exceed 19 m s−1.
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a) Number Size Distribution

b) CCN c) Nd

Figure 4: Results from UKESM1-AMIP sensitivity simulations for global-mean (a)
Aerosol number size distribution (annual mean), (b) Monthly-mean cloud condensation
nuclei concentration at 800 m above the surface (≈ cloud base height), (c) Monthly-mean
cloud droplet number concentration (Nd). Note that the G03 result in (a) is visible in the
nucleation and Aitken mode, but overlaps GR14 in the accumulation and coarse mode
where it is not clearly visible.

Figure 5: Pooled standard deviation calculated for the UKESM1-AMIP sensitivity sim-
ulations: (a) Cloud condensation nuclei (CCN) concentration; (b) Nd concentration; (c)
Clear-sky radiative forcing; (d) Cloudy-sky radiative forcing.
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Figure S1: Near surface SSA mass mixing ratio in UKESM1-AMIP simulations with
parameterizations of a) G03, b) JA11, c) MO86, d) MJ11, e) GR14, f) MA03, g) SA15.
The changes in SSA mass mixing ratio are neglibile when the parameterization of SA15
is implemented in UKESM1. Lower values for the simulation with parameterization with
MA03 is likely due to emissions only in accumulation mode. The global mean in each of
the simulations are shown within the figure.
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