How New Zealand's Ocean is changing – New Zealand's Earth System Model

Erik Behrens

Erik.Behrens@niwa.co.nz Climate, Freshwater & Ocean Science THE DEEP SOUTH

Te Kōmata o Te Tonga

Outline

- Observed oceanic changes
- New Zealand Earth System Model
- How is the ocean changing over the next decade(s)?
 - Temperature anomalies
 - Temperature extremes (MHWs)
- How do habitats and species distribution will change
- Take home messages

The observed warming and expansion of the (sub)tropics

Observed SST trend 1981-2023

New Zealand's Earth System Model in a nutshell

- New Zealand Earth System Model (NZESM) is CMIP6 class earth system model based on UKESM
- NZESM simulates past and possible future changes in relation to CO₂ emissions (CMIP6, IPCC)
- NZESM has a refined ocean grid to capture local conditions better ('dynamic downscaling')

New Zealand's Earth System Model in a nutshell

- New Zealand Earth System Model (NZESM) is CMIP6 class earth system model based on UKESM
- NZESM simulates past and possible future changes in relation to CO2 emissions (CMIP6, IPCC)
- NZESM has a refined ocean grid to capture local conditions better ('dynamic downscaling')

New Zealand's Earth System Model in a nutshell

- New Zealand Earth System Model (NZESM) is CMIP6 class earth system model based on UKESM
- NZESM simulates past and possible future changes in relation to CO2 emissions (CMIP6, IPCC)
- NZESM has a refined ocean grid to capture local conditions better ('dynamic downscaling')

Sea surface temperature anomalies SSP2.6, SSP4.5 and SSP7.0

Sea surface temperature anomalies middle of the century

- NZ surface ocean will have warmed by at least 0.8 to 1.5 degrees on average by 2050
- Australia east coast will be more impacted

Median MHW intensities anomalies middle of the century

• A normal MHW will be at least 0.25-0.75 degrees more intense than present day conditions

• MHW impacts between Australia and Aotearoa-NZ will be similar

MHW intensity anomalies middle of the century [°C]

MHWs intensity in coastal waters

- NZESM misses low intensity MHWs and has too many strong MHWs.
- North Island
 +0.5-1C increase
- South Island
 +0.3-0.6C increase
- Increased likelihood for intense MHWs

OBS 1995-2014, NZESM 1995-2014, 2040-2059, 2080-2099

MHWs intensity in coastal waters

- NZESM misses low intensity MHWs and has too many strong MHWs.
- North Island
 +0.5-1C increase
- South Island
 +0.3-0.6C increase
- Increased likelihood for intense MHWs

OBS 1995-2014, NZESM 1995-2014, 2040-2059, 2080-2099

Median MHW days anomalies middle of the century

- Large increases in Tasman Sea as it warms and the Subtropical Front shifts south
- Currently we have about 55 days (North Island) and 30 days (South Island)

NZESM data to predict change in species distributions

- NZESM data has been used as input in combination with information of current species distributions
 - Temperature
 - pH
 - Aragonite horizon
 - Oxygen
 -

Predicting the effects of climate change on deep-water coral distribution around New Zealand—Will there be suitable refuges for protection at the end of the 21st century?

Owen F. Anderson 🔀 Fabrice Stephenson, Erik Behrens, Ashley A. Rowden

Implications for the conservation of deepwater corals in the face of multiple stressors: A case study from the New Zealand region

 Fabrice Stephenson^a ♀ ⋈, Ashley A. Rowden^b, Owen F. Anderson^b, Joanne I. Ellis^d,

 Shane W. Geange^e, Tom Brough^f, Erik Behrens^b, Judi E. Hewitt^g, Malcolm R. Clark^b,

 Dianne M. Tracey^b, Savannah L. Goode^{bc}, Grady L. Petersen^f, Carolyn J. Lundquist^{fh}

NZESM data to predict change in species distributions

Predicting the effects of climate change on deep-water coral distribution around New Zealand—Will there be suitable refuges for protection at the end of the 21st century?

Owen F. Anderson 🔀, Fabrice Stephenson, Erik Behrens, Ashley A. Rowden

Implications for the conservation of deepwater corals in the face of multiple stressors: A case study from the New Zealand region

<u>Fabrice Stephenson</u>^a *Q* ⊠, <u>Ashley A. Rowden</u>^{b c}, <u>Owen F. Anderson</u>^b, <u>Joanne I. Ellis</u>^d, <u>Shane W. Geange</u>^e, <u>Tom Brough</u>^f, <u>Erik Behrens</u>^b, <u>Judi E. Hewitt</u>^g, <u>Malcolm R. Clark</u>^b, <u>Dianne M. Tracey</u>^b, <u>Savannah L. Goode</u>^{b c}, <u>Grady L. Petersen</u>^f, <u>Carolyn J. Lundquist</u>^{f h}

Take home messages

- New Zealand's Oceans warm (~0.3C/decade) about 3 times the global rate.
- Over the past decade New Zealand has seen an increasing number of MHWs. This trend will continue.
- MHW intensities are projected to increase more strongly around the North Island, while MHW days will increase more strongly around the South Island.
- Temperatures shift about 5km/year southward.
- Climate change predictions are valuable to inform spatial planning

Bottom temperature trends in coastal waters

- Enclosed bays show stronger bottom warming.
- Hotspots are North and West Coast, East Coast is not warming as much.

Bottom temperature trends in coastal waters

• South Island does not show much regional differences, possibly more along North Otago Coast.

Why dynamic downscaling?

17.5

15.0 12.5

1985

1990

Extracted NZESM temperatures against observations for Tauranga region

2000

2005

2010

Extracted NZESM temperatures for best and worst case scenarios

1995

17

2015