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Abstract: This study investigates the direct and indirect impacts of extreme sea level (ESL) flooding
on critical infrastructure. While methods to quantify the direct impacts of ESL flooding on coastal
areas are well established, the indirect impacts that extend beyond the directly affected population
are less well understood. This study assesses the vulnerability of electricity, road, telecommunication,
water supply, and wastewater infrastructure to service disruption from coastal flooding in South
Dunedin, New Zealand. We quantified the population affected by single and multiple service losses
caused by 100-year average recurrence interval (ARI) ESL flooding across 0.1 m sea-level rise (SLR)
increments up to 1.5 m. The study identified an ESL “tipping-point” at 0.6 m SLR, where direct loss
of road access and electricity services is extensive, and causes indirect loss of telecommunication
services. This also impacted the functionality of a key wastewater pumpstation servicing the wider
region. As sea levels in the area are projected to rise 0.60 m in the next ~60–90 years, this information
can inform assessments of potential adaptation investments in long-term infrastructure management
plans in the face of uncertainty.

Keywords: extreme sea level; sea-level rise; coastal flooding; climate change; critical infrastructure;
vulnerability assessments

1. Introduction

Extreme sea level (ESL) flooding is a significant threat to low-lying coastal areas that
can result in direct and indirect impacts on communities and their underlying critical
infrastructure. The risk is further exacerbated with long-term stressors including sea-level
rise (SLR) and vertical land movement (VLM) [1–4]. With the increase in severity and
frequency of ESL events in the future, the coastal protection, investment planning and
resilience for coastal communities is of upmost importance. Critical infrastructures (CI) are
vital to the functioning of these coastal communities. Without underlying services such as
energy, power, telecommunication, transport and water, the communities’ quality of life is
severely impacted.

In the past, these CI systems would provide their services independently. However,
they are becoming increasingly complex and reliant on each other for regular operation. For
example, with the increasing number of smart monitoring systems, telecommunication and
power infrastructures are required for the normal operation of many control systems [5].
These links are known as interdependencies. Formally defined, a dependency refers to
the unidirectional relationship and interdependency indicates the bidirectional interaction
between two independent CIs [6]. Interdependencies can be physical, cyber, and geographic
in nature, leading to coupling between two CIs. While studies traditionally look at the
effect of ESL on individual infrastructure networks (such as water [7] and transport [8]
networks) independently, there is a move to looking at these networks as a whole.
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When considering these dependencies within and between CI systems, these outages
can extend beyond the original hazard extent. A localised earthquake or flood can cause
cascading failures throughout an entire infrastructure system [9,10]. Cascades can prop-
agate in severity and magnitude to bring down vast swaths of services in a region from
a singular failure point. While there have been studies that consider interdependencies
that focus on other hazards such as earthquakes and typhoons, less have investigated the
impact of ESL on multiple critical infrastructure systems, considering interdependencies at
a local level.

This study offers a demonstration of the incorporation of an interdependency model
and combines it with an ESL infrastructure risk assessment to gain a holistic view of
the direct and indirect loss of critical utilities to coastal communities. It addresses a
research gap in the practical application of quantifying infrastructure impacts to local
communities with respect to ESL flooding. This is achieved by incorporating a “network-
of-networks” interdependency model into the risk assessment workflow. The resulting
model is built such that it is hazard agnostic and flexible for different site locations and
varying types of infrastructures assessed. In the remainder of the paper, we first present our
methodology for quantifying the direct and indirect impact on a coastal community. This is
then applied to a case study of South Dunedin, New Zealand, quantifying the vulnerability
of electricity, telecommunication, road, water supply, and wastewater infrastructure to
service disruptions from coastal flooding. Finally, we review the results, their ability to be
used in decision-making, and the applicability of the modelling approach for assessing the
impacts of ESL.

2. Materials and Methods

Figure 1 provides an overview of a general risk assessment framework adapted for
our later case study input and output requirements (Section 3). The goal of the framework
is to quantify the disruption of infrastructure interdependencies in terms of impact to
the community.
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Figure 1. Risk assessment framework accounting for direct impacts and capturing the subsequent
indirect impacts due to offline upstream nodes and interdependencies.

2.1. Risk Assessment

First, a traditional exposure and vulnerability assessment takes all component asset
data and hazard scenarios to give the non-functional and directly damaged assets as
output (as grouped in box 1 of Figure 1). A hazard scenario is calculated as a spatial
extent, and the assets are partitioned into component points, lines, and polygons. In an
exposure assessment, the hazard extent is intersected geospatially with the assets. This
identifies which assets are located within the hazard zone and may therefore be at risk of
being impacted by the hazard. Once the assets at risk have been identified, vulnerability
assessments are performed to estimate the probability of damage or failure of each asset
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given the intensity of the hazard. This is achieved by applying fragility or vulnerability
functions to assets, which are either experimentally or empirically developed probability
distributions for a specific damage state (light, moderate, severe, collapse, and no damage)
given the intensity of a hazard. By sampling from the probability distribution multiple
times, the likely damage state of a component can be estimated, and the consequences of
the damage can then be evaluated through different lenses, such as physical, functional,
social, and economic loss as a result of the failure of a particular infrastructure asset.

2.2. Consequence Framework

In a typical risk assessment, only direct impacts of the hazard need to be considered
(i.e., box 1 of Figure 1) [11]. However, when evaluating critical infrastructure functionality,
the indirect impacts also need to be factored in [9]. The indirect impacts can be classified as
two types: (1) network disconnections that occur within an infrastructure network, and
(2) disruptions caused by the interdependent interactions with other critical infrastructure
networks. The steps to quantify these are shown in the consequence framework (box 2 of
Figure 1), where each critical infrastructure network is converted into a network graph or
connectivity model by using topology to form the connectivity model, and interdependent
links are created between asset components across infrastructure networks. This follows
the general approach used widely across the literature [9,10,12,13].

There are examples of existing tools that allow the modelling of these indirect impacts,
such as DOMINO [14] and IN-CORE [15]. We have identified the need to create a framework
to add to this, because other tools are not always fit-for-purpose. Other implementations are
also mostly limited to the interactions between two to three different critical infrastructure
networks. The aim of the development of this framework is to represent both direct and
indirect impacts for different critical infrastructure assets and networks. The proposed
framework includes two components to capture these effects: a connectivity model that
captures intra-network disruptions, and an interdependent model that captures complex
inter-network interactions. The details of these components are further elaborated in the
following sections.

2.2.1. Connectivity Model

The most intuitive method for representing infrastructure network functionality and
capturing how direct impacts propagate through a network, is to create a network graph
using graph theory. Infrastructure asset components can be represented as networks
of nodes (points) which are interconnected with edges (lines). A network graph can
be directed, undirected, and multi-graphed (allowing for parallel edges connecting two
nodes). Along with this, there are additional model formulations of networks which can
be implemented with additional data, such as capacities and demands of assets to create
flow networks. For critical infrastructure networks, a functionality network analysis can
be broadly split to three main levels of analysis, with each level requiring an increasing
amount of data to characterise the network. This is summarised in Figure 2.
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We start with a basic non-connected component model, which is useful for conducting
the loss modelling of buildings and structures. Each infrastructure component is intersected
with a potential hazard to understand the exposure. In this analysis, the connectivity
between components is not taken into consideration.

In the second level, a connectivity model is created, where the components are con-
verted into a network graph consisting of nodes and edges as discussed previously. Geospa-
tially adjacent assets are linked together to form a network. The connectivity of components
can be calculated, where connectivity is defined if a path of edges exists between two nodes.

Flow models are an extension of the connectivity model, where the capacities and
loads of components are incorporated into the model. This can allow for more insight into
potential overloading effects within the network that can trigger cascading failures because
of a lack of network capacity.

Finally, physical flow models are the most complex network model, which add physics-
based equations to simulate the physical behaviour of the infrastructure network. When
using topology models, a contagion-based failure model is usually assumed, where the
failure of one node is propagated to its adjacent nodes. However, most systems do not
cascade in a localised fashion. For example, when power network components fail, the
redistribution of power follows electrical physical laws (Ohm’s Law, Kirchhoff’s law),
which results in the non-local spread of component failures. This allows the simulation
of complex intra-network cascade mechanisms including voltage collapse and cascading
overloads [16,17].

While there are domain-specific tools to create physical flow models for each infras-
tructure network and provide an accurate representation of critical nodes and their failure
modes [5], the disadvantages are that they are computationally expensive, especially if the
network is large, or when multiple different CIs are modelled simultaneously. Physical
flow models also require potentially sensitive infrastructure data and expert domain and
specific system knowledge to implement the simulation.

Capacity and demand information can also be difficult to obtain because of the sensi-
tivity of infrastructure data in some countries and sectors. Due to this, a connectivity model
was chosen and used to model each infrastructure network within this framework.

2.2.2. Cross-Infrastructure Dependencies

To model the interdependencies between infrastructure networks, several methods can
be used, including agent-based models, economic models and complex network theory [18].
Of the four different classes of interdependencies identified by Rinaldi [6], only geographic
and physical interdependencies will be modelled using complex network theory. These
dependency relationships are modelled using a dependency table, which maps the re-
lationship between two asset types across different critical infrastructure networks as
a dependency.

2.2.3. Human Consequences

In this assessment of human or societal impact, two key steps are undertaken. Firstly,
the population is assigned to the respective area, which can be accomplished by utilising
census data or by distributing the population to individual dwellings for more precise
estimation. Then, for each damage scenario, damaged nodes and edges can be removed
from the network graph to represent a non-functional asset, and a connectivity analysis is
performed to return the indirect impact via network disconnections. Both types of impact
are summarised in terms of human impact by using this population data supplemented
with data from other domains, such as population demographics and socioeconomic
deprivation [19]. Once the impact and consequences are ascertained, an appropriate
response can be taken to reduce the risk. This framework can be iteratively applied
to evaluate the effects of different approaches to find the options that cause the largest
reduction in consequence.
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3. Case Study
3.1. Study Location

To demonstrate our risk framework and methodology, a case study was performed in
a local community exposed to coastal inundation exacerbated by rising sea levels. Dunedin
is a coastal city and the second most populated one on the South Island of New Zealand.
Figure 3 illustrates the residential suburbs (i.e., South Dunedin, Forbury, St Clair and
St Kilda) located on a low-lying coastal plain between the Pacific Ocean and Otago Harbour.
These suburbs are collectively referred to as “South Dunedin”. South Dunedin suburbs
reached a population of 13,977 in 2018 [20], forming the highest suburban population
densities in the wider Dunedin urban area. The suburbs are a highly important residential
area for Dunedin City, housing a relatively large workforce and supporting several key
commercial and industrial areas, schools, and recreational facilities.
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Figure 3. Location of the study site: (A) South Dunedin is located in the South Island of New Zealand.
(B) Overview of Dunedin City. (C) The local area is overlaid with the digital elevation model
(DEM) [21] with South Dunedin suburbs labelled and outlined in red [22].

South Dunedin is built largely on reclaimed salt marsh land less than three meters
above present-day mean sea level (MSL) [23]. The geomorphic setting and low elevation
mean the area is subject to various natural hazards [24] with future coastal flooding in
response to relative sea-level rise (RSLR) being a high concern. Several national-scale
studies enumerate building [25,26] and infrastructure network component [27] exposure to
extreme sea level (ESL)-driven coastal flooding and RSLR in the Dunedin urban area. While
exposures are not directly reported for South Dunedin in these studies, 0.3 to 1 m RSLR is
expected to double present-day building and network component exposure to 100-year ESL
flooding. As depicted in Figure 4, several key infrastructure network components servicing
South Dunedin could be exposed to future 100-year ESL flooding. Thus, investigating
direct and indirect service disruption across multiple interdependent networks is timely
with 0.3 to 1 m RSLR projected to occur for the Dunedin urban area in the next 40 to 90 years
under Shared Socioeconomic Pathways (SSPs) median SSP2-4.5 and SSP5-8.5 scenarios for
the region, when also considering vertical land movement caused by seismic tectonic uplift,
land compaction or sediment accumulation [28].
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Figure 4. Infrastructure assets in the study area. The grid exit point (GXP) is a transmission substation
between the national grid and the local distribution network. Source nodes are denoted with
a diamond.

3.2. Coastal Flood Hazard

Our investigation uses 100-year ARI ESL flooding scenarios developed by Paulik et al. [26]
for present-day and future higher sea levels. Here, flood inundation from 100-year ARI
ESL water surface heights were mapped at a 2 m horizontal resolution onto high-resolution
airborne LiDAR DEMs for the Dunedin urban area [21]. A static “bathtub” inundation
model approach was applied to calculate DEM raster cells at topographical elevations below
a corresponding ESL elevation [29]. An inundation depth above ground was computed for
DEM grid cells from the difference between ESL water surface height and underlying terrain
elevation. The model identifies raster cells with a hydrologic connection to the coastline to
reduce potential overestimation of flood inundation over land (i.e., a raster cell is inundated
if at least one of its cardinal neighbours are inundated and hydraulically connected to the
coastline through local topography [29]). Topographic structures (i.e., levees) protecting
land from flooding were digitised as vector polylines, where present and identifiable using
aerial imagery from Land Information New Zealand (LINZ). In the absence of publicly
available information on flood protection structure design levels, protection afforded to
land is assumed up to corresponding 100-year ESL heights at present-day MSL. ESL flood
maps were derived for 0 m SLR and thereafter at 0.1 m SLR increments up to 2 m. Using
this approach for inundation mapping creates 21 RSLR scenarios, which are independent
of future RSLR projections. We consider RSLR up to 2 m as a sufficient representation of
projected scenarios and their uncertainties for the Dunedin urban area expected over the
next 100 years under various shared socioeconomic pathways (SSPs) [30].

3.3. Assets

Table 1 shows the infrastructure networks that were assessed by converting their key
components into nodes and edges. A graph is created by connecting node assets with
their incident edge assets to form a network. Asset data were obtained through available
open-source data and service providers.
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Table 1. Network components within the study area, and the corresponding vulnerability functions
used. Note that no vulnerability function was required for the treatment plant, as it was not exposed
in any scenario.

Network Component Type Node (N) Edge (E) Data Source Vulnerability Function

Power
Grid Exit Point (gxp) N Transpower [31]

Zonal Substation N Aurora Energy and [10] [31]
Cables and Overhead Lines E Aurora Energy and [10] -

Communications
Exchange N [10] [31]
Cabinets N [10] [31]
Cables E [10] -

Water Supply Pumpstation N DCC and [10] [32]
Pipes E DCC and [10] -

Wastewater
Treatment Plant N DCC and [10] N/A

Pumpstation N DCC and [10] [32]
Pipes E DCC and [10] -

Roads - E OSM -

DCC: Dunedin City Council (https://www.dunedin.govt.nz/dunedin-city/maps-and-photos, accessed on
14 June 2023).

For each asset class type, an appropriate vulnerability function (i.e., depth–damage
curve) was selected from the current literature. We assume buried infrastructure (pipes
and cables) are not affected given they are frequently exposed to water (via infiltration and
ground water). We also assume that power poles and overhead lines are not exposed. In
the absence of asset floor heights, several sites were visited, and the height of the lowest
flood protection structure was surveyed. For the remainder of the sites, we have assumed
the floor height to be the minimum of that asset type. For roads, a different approach was
used to characterize accessibility in lieu of using a fragility function. A road segment was
considered inaccessible if the flood depth exceeded the average wheel height of a typical
civilian car, as this captures the accessibility in the evacuation phase immediately post flood
for the community.

3.4. Risk Assessment

The direct impact exposure and vulnerability assessment was conducted using the
open-source software RiskScape [33]. The flood hazard depth was sampled at the asset
centroid, and for roads, all intersections with the hazard were recorded. An asset is
considered non-functional and directly damaged if the damage ratio of the corresponding
flood depth exceeds 0.5. The value of 0.5 is selected, to represent a “severe” damage
state [32]. The connectivity model is built by connecting asset nodes to their source node
using pipe and line data. Where unavailable, asset nodes were connected to source nodes
via the shortest path along road corridors, following the assumption that utilities generally
follow the road network. For roads, a network graph was readily available using the library
OSMNx [34]. The source nodes were points on the boundary edge of the study extent that
can access the state highway. Figure 5 shows an example of these nodes.

Figure 6 gives a summary of the overall dependencies and links between asset types
and population. Three types of relationship are captured in the analysis. Within a network,
the relationship is inferred from the topology by first defining a source node type, and
then connecting it to the downstream nodes. For cross-infrastructure links, links were
defined first as a rule between two asset components, and then each dependent link was
created by assuming that the closest (Euclidean distance) substation services the node.
The overall disruption is then quantified by incorporating census data to estimate the
population without service/access. For each census unit (statistical area 1, SA1) [20], the
same approach of taking the closest service node of each infrastructure to the centroid of
the unit was used.

https://www.dunedin.govt.nz/dunedin-city/maps-and-photos
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4. Results and Discussion

Figure 7 summarises the direct and indirect impact on the population in South Dunedin
in terms of loss of infrastructure service across power, communications, wastewater, and
roads. It clearly illustrates a pronounced ‘tipping point’ that occurs at 60 cm of sea-
level rise (SLR) combined with the 100-year ARI inundation event, beyond which a large
proportion of the modelled population experiences a loss of access to services. At this
specific combination of events, the flooding is observed within the low-elevation basin area
in the middle of South Dunedin. As the extent of the flooding directly impacts a large area,
we do not observe indirect impacts surpassing the direct impacts, a trend often observed in
other interdependency case studies [9,10,12].
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network, (B) communications network, (C) wastewater, (D) roads. The water supply network was
undisrupted and omitted from the figure.

For the power and communications networks, a second step is observed at 90 cm SLR,
where a second substation had failed, leading to an indirect loss of service to the commu-
nications network to areas outside of the basin area. For wastewater, the Musselburgh
pumpstation upstream of the wastewater treatment plant is directly inundated at the 60 cm
SLR tipping point, and loses its power source.

At 60 cm SLR, areas with the most service loss are located where elevation is low. As
the direct impact dominates in this analysis, this is expected. Figure 8 illustrates that the
population centre of South Dunedin (located in the South Dunedin and St. Kilda suburbs)
is the most susceptible to critical infrastructure loss. Most of the indirect impact of loss of
communications cabinets were found on the southern side in the suburbs of Saint Clair,
where the loss of the St. Kilda substation disrupts the power supply to them.

We note that the wastewater treatment plant services a greater extent than the South
Dunedin suburbs within the study extent. The Musselburgh wastewater pumpstation that
is disrupted by the tipping point services the greater Dunedin area, affecting approximately
80,000 residents outside of South Dunedin [35]. Similarly, for road access, many areas were
completely flooded and could not be accessed. The eastern peninsula of South Dunedin
outside of the study extent would lose road access and be indirectly cut off from the
mainland. We note that the eastern peninsula also loses road access to the mainland in the
tipping point scenario, which is estimated to have approximately 10,500 residents. Overall,
the results demonstrate that the indirect impacts of an isolated flooding event in South
Dunedin will extend far beyond the area of inundation.

The results provide an initial view and approximate time period to implement adapta-
tions. To provide additional context, the implications of this modelling are linked to the
projected SLR scenarios for the region; here, we have used SSP2-4.5 and SSP5-8.5 scenarios
with the 50th percentile and the 17th–83rd percentile range. Figure 9 presents these sea-level
rise scenarios over time, including the effect of vertical land movement [28]. This shows
that in the more pessimistic scenario, the impacts discussed previously could be observed
in approximately 60 years for the 50th percentile, pushing out to 80 years for the more
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optimistic scenario. Regardless, these are both within normal planning timeframes and
the design life of many infrastructure assets such that adaptation should be considered
a priority.
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In the static bathtub model, studies have shown that on flat terrain, inundation extents
and depth are often overestimated. As such, further refinements to the hazard data will
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need to be made, such as incorporating a hydrodynamic ESL model, prior to making
decisions on specific future adaptations. The next steps to extend the framework are to
add stochastic components to the model to test their relative sensitivity to the model.
Uncertainty can be accounted for in the hazard (different realisations of flood events), the
vulnerability assessment (using different fragility functions and consequence thresholds),
and when assessing the interdependencies (strength of the connections, uncertainty of the
network configuration). The framework can be adapted to the higher resolution hazard
data by increasing the level of detail of the asset consequence model to give better results.
In this case, the hydrodynamic model could be paired with a physical hydraulic model of
the wastewater system to understand the full outage impacts of the ESL hazard, as well as
understanding the full intra-network hydraulic effects of wastewater backflow.

5. Conclusions

This study has presented a risk assessment framework accounting for direct and
indirect impacts, and has been demonstrated using a scenario focussing on the effects of
extreme sea level (ESL) flooding on critical infrastructure. The base methodology presented
here is adaptable and additional analyses, such as estimating recovery times, can be
incorporated. In the case study, we have found that further analysis, such as a probabilistic
assessment, did not prove beneficial due to the coarse nature of the hazard data. Further
refinements to the hazard data, such as incorporating a hydrodynamic ESL model would
be beneficial in obtaining a better resolution result to inform future adaptations. Further
work would also need to be conducted on other hazards exacerbated by SLR, such as
groundwater flooding. We would have expected that our interdependency methodology
could have been applied to any hazard at any scale, but from the case study, we have
found that modelling interdependencies at a suburb level has challenges capturing the
indirect impact of assets. Barring road infrastructure, because edges (pipes and lines) were
not exposed, and that there were few nodes, the indirect impacts are not as widespread.
A higher resolution of asset data, such as including the street-level transformers, would
increase the effects of indirect impacts.

With a possibility of reaching our identified 60 cm SLR in 60–80 years, the conse-
quences and impact of an ESL flood event on critical infrastructure services would be
catastrophic. Despite the temporal uncertainty, this timeframe corresponds with many
long-term infrastructure and planning decisions and still reflects an urgency to take these
findings into consideration when making decisions about the city’s future infrastructure.
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