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A B S T R A C T

The prevalence of cascading failures is growing as infrastructure becomes more interdependent and climate
change exacerbates more extreme hazards. After such events, the general focus is on the magnitude of direct
damage or loss; it is less understood how events trigger failures throughout other infrastructure. In this work,
we present a methodology to model direct and indirect impacts from an event for a multi-system network,
including interconnected infrastructure and end users. We perform a case study of New Zealand’s second
largest city, Christchurch, investigating electricity, water supply, and wastewater networks following a range
of coastal flooding events and climate change scenarios. For a 10-year average recurrence interval event given
no sea-level rise, there is a 216% increase from directly impacted end users to the total number of end users
that have lost at least one utility. For the same scenario, this metric is 71%, 129%, and 131% for end users
who have lost electricity, water, and wastewater, respectively. The results show a larger estimate of impact on
residents and a more geospatially-varied loss of service. This methodology provides insight for utility operators,
emergency response, and communities on node criticality, areas of impact, and resource requirements after an
event occurs.
1. Introduction

The critical infrastructure we rely upon daily to provide services
such as electricity, water, and sewage disposal is largely dependent on
each other [1]. For example, the pumps throughout the water supply
network rely on electricity to function, and wastewater treatment plants
require electricity to treat incoming sewage. Similarly, water is used for
cooling in electricity generation, and a physical disruption in the water
or wastewater networks could impact nearby electrical substations.
Because of this interdependence (and dependence) between systems,
there can be unforeseen impacts due to cascading failures, which occur
when one system failure causes another system to fail. While redundan-
cies can be incorporated into networks (such as backup generators),
the increasing variability and intensity of natural hazards expected
to occur as a result of climate change means we need to consider
future scenarios and how cascading failures may be triggered [2].
Examples of such events include the power outages in Texas due to
the recent 2021 winter storm [3], in Puerto Rico due to Hurricane
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Maria in 2017 [4], in the 2005 Hurricane Katrina in New Orleans [5],
along the U.S. East Coast in 2012 from Hurricane Sandy [6], and in
Christchurch following the 2011 earthquakes [7]. These are disruptive
and costly events that call for proactive measures to develop resilient
infrastructure, which are often more cost-effective in the long term. In
one study looking at infrastructure in thousands of different climate
scenarios for low- and middle-income countries, a $1 investment in
more resilient infrastructure had a benefit of $4, with an overall net
benefit of $4.2 trillion across these countries [8]. Understanding cas-
cading impacts can help decision-makers and utility operators develop
more robust infrastructure and limit damage and costs when recovering
from natural hazards.

These interdependencies present a challenge for assessing and mod-
eling risk in these systems. One framework to understand the inter-
actions categorizes interdependence into physical, cyber, geographic,
and logical interdependencies [1]. A review performed by Ouyang [9],
further classified modeling approaches into six categories: empirical,
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agent-based, system dynamics-based, economic theory-based, network-
based, and others. More recently, He and Cha [10] performed an
extensive review of recovery and resilience modeling of infrastruc-
ture systems under disruptive events, reiterating most of the cate-
gorizations defined by Ouyang [9]: agent-based, system dynamics-
based, input–output-based, computable general equilibrium-based, net-
work topology-based, and network flow-based approaches. He and Cha
[11] also differentiated the resolution of infrastructure modeling into
system-to-system level, facility-to-facility level, and system-to-facility
level, where the system could mean an entire power or water sys-
tem while the facility could be the specific nodes within the system
such as the pumping stations and electrical substations. Each of these
methodologies have their trade-offs and advantages depending on the
conditions such as the particular infrastructure, data, and complexity.

Existing studies that demonstrate these methodologies and inves-
tigate hazard-related risks to infrastructure often focus on a single
infrastructure system (e.g., [12–19]) or present a regional [7,11,20,21]
or national [22–26], aggregated view on cascading failures. Regional
and national studies assess large-scale trends or identify nationally
critical nodes, while those that look at the city-scale use a similarly
large data resolution or an idealized network. However, these studies
have not sufficiently examined the intricacies of real-world and mul-
tiple networks or the local-level impacts on residents from cascading
failures, which could highlight inequities in the community [27]. For
example, Guidotti et al. [28] investigated an idealized interdependent
network, which proposed a modeling framework that includes the
recovery to get the infrastructure back online (also considered in [29]
from a risk theory perspective, Sun and Zhang [30] for a transportation
infrastructure, and González et al. [31] to power, water, and gas in
Shelby County, TN, USA), but this example, which uses an idealized
network, does not convey the geospatial impacts of the cascading
failures on a real-world urban case study.

Among the current body of work, the models largely incorporate
business-as-usual hazards, such as earthquakes, previous hurricanes,
and recurring flood events, which do not address divergent, uncertain
scenarios such as events influenced by climate change [32] and need to
be included in modeling to support the decision-making related to these
impacts [33]. This uncertain future presented by climate change is
among one of many uncertainties that are often neglected in models of
interdependent infrastructure [34]. Additionally, there is a lack of met-
rics that address the impacts at the business and residential level [35],
rather focusing on the system- or infrastructure-level resilience [19,
36–38] in terms of reduction of consequence [39] and functionality
loss [30]. Common metrics include lost load, in which an assumption
is made about utility use across the users, and economic impact, which
places a certain valuation on functionality and may lead to underes-
timation of the impacts to different demographics. Wang et al. [40]
describes a framework to understand interdependent infrastructure,
applying a network model to the power and water systems of a city in
China. This study uses network statistics to compare the impacts from a
regional level, assessing the functionality of the infrastructure networks
as opposed to the local impacts to the residents. Other studies similarly
use recovery times and network statistics to assess the resilience or
impacts to infrastructure [13,41–43], which conveys the risk to the
infrastructure, but stops short of understanding the residential impacts,
in magnitude and geospatial location. In [44], the authors use social
vulnerability indicators to look at cascading impacts from both random
failures and Hurricane Irma on Tampa, Florida, however this is only for
the community level and two interconnected systems (the water and
transportation networks).

While many of these studies work towards developing new method-
ologies to model interdependent infrastructure, few test the application
in real-world case studies, which are important for understanding
risk and how it plays out in interdependent infrastructure systems.
The need to assess the performance of these theoretical models un-
2

der different hazards and real-world conditions is highlighted both in
model development studies and comprehensive reviews of modeling
approaches [9,10,36]. Additionally, many authors apply their models
to idealized and business-as-usual scenarios (for both the network and
the hazard) which may perform differently than when applied to real
networks with divergent hazards, and limit their applications to one or
two networks. Few of these studies, even those at the facilities level,
include granularity on the scale of residential properties, which can
more accurately show the social cascading impacts.

Our work addresses these gaps by applying an updated network
model to the real-world infrastructure of Ōtautahi/Christchurch in New
Zealand experiencing the hazard of coastal flooding under climate
change and shows the cascading impacts from the infrastructure level
down to the household level. Specifically, we examine the electricity,
water supply, and wastewater networks within the city using real-world
data, and investigate how impacts across all three systems translate
to the end users throughout the community and the utilities, across a
range of climate change scenarios.

Therefore, we provide a quantitative assessment of direct and in-
direct risk and a qualitative discussion of the relative importance of
its inclusion in a holistic risk assessment. We answer two important
questions: (1) to what extent do indirect impacts change the assessment
of risk to residents? and (2) how are impacts spatially distributed
throughout the community?

The next section describes the network model that was developed
and run, the case study location and hazard selected for this simula-
tion, and the specific data used for this analysis. Section 3 describes
the geospatial and numerical results of the model, which are further
explained in Section 4.

2. Methodology

To begin, we developed a generalizable model of the integrated
infrastructure networks and the communities they serve. Within the
model, we simulate an event which directly impacts a subset of the util-
ities and users. Then, the properties dependent on the directly impacted
assets are determined, after which the model quantitatively assesses
both the direct and indirect risks from the event. Our model can be
used on any city and incorporate any number of infrastructure networks
as well as events (e.g. natural hazards, system failures, and malicious
activity). The following subsections detail how this is conducted and
introduces an application on an urban case study.

2.1. Model preparation

First, geospatial data for each selected infrastructure system (e.g.,
water services, telecommunications, and electricity, which we call util-
ties) and the associated end users or properties (e.g., households, su-
ermarkets, and businesses) for the study area are collected as inputs
o the model. All together, this collection of data sets represents the
ystem in study. At this stage, connections between the infrastructure
nd end users have not yet been established, but a baseline scenario of
he system’s functionality can be determined. The other primary set of
nput data is the extent of the event, which is also included in the model
s a geospatial data set. This could be a numeric value representing
hazard intensity, such as water depth or wind speed, or a Boolean

ndication of whether the area is exposed or not to the hazard. For this
escription, the event represents a single possible scenario, while in the
ase study, we iterate a series of scenarios through the model to create
portfolio of results.

Next, the impact of the event is superimposed on the system, and the
ystem elements (here the term elements or nodes includes both utility

infrastructure and end users) are designated as either functional or out
of service after the event. The functionality of the system elements after
being exposed by the hazard are based on fragility curves, which define
a functionality after a particular amount of exposure (e.g., water depth

for flooding or peak ground acceleration for earthquakes). The specific
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Fig. 1. Diagram showing the general workflow used to assess direct and indirect impacts.
components of the assets are not considered (e.g., the transformers or
the pump housing), but rather the entire asset themselves (e.g., the sub-
station building, the pumping station building, the residential house,
etc.). For this study, we look at the worst-case scenario of exposure and
simply use a single step fragility curve function, where any exposure
means the particular element has failed. With imminent coastal flood-
ing, these systems would be expected to be turned off before they are
exposed or at the moment they become exposed, and households will be
evacuated if any flooding has occurred. Therefore, while it is possible
to incorporate partial functionality, this is not entirely insightful for
this case study. The vulnerability of the links are not considered in this
study, primarily for the reason that for coastal flooding, the overhead
power lines and the underground pipelines are not often the critical
points of failure. This model uses a network topology-based approach,
and thus does not consider the specific flows throughout the systems,
such as potential overloads on the electrical power or water networks.
This set of results represents the direct impacts, which can be mapped
to show the immediate loss of service from the event.

2.2. Network analysis

To capture the indirect impacts, we leverage a network represen-
tation of our interdependent system. Each of the system elements are
represented by a vertex, or node, in our network model, which can be
connected to other infrastructures or end users via an edge, or link.
Depending on the situation, the edges between the vertices may follow
specific rules as to which vertices they are connecting (e.g., connecting
an electric zone substation to a particular grid exit point), while for oth-
ers, the edges may be generated based on proximity (e.g., connecting
a household to the nearest wastewater treatment plant).

The whole system (i.e., infrastructure vertices, end user vertices, and
edges between these vertices) can be represented by an adjacency ma-
trix, with the size of the matrix being proportional to the total number
of vertices. Within the adjacency matrix, the edges between vertices
are represented by a Boolean value (with 1 indicating a connection
and 0 indicating no connection) [45]. More information on the network
representation can be found in Appendix B.

With the network representation of the system, the initial loss in
service from the event is cascaded through the matrix to simulate the
indirect loss of service. This is done by identifying the directly impacted
3

vertices from the superimposed event on the system, as described in
the previous section, and setting any connected vertices’ value to 0
in the adjacency matrix, signifying a loss in connection. This step
of identifying connected vertices and setting the dependent vertices’
matrix values to 0 is repeated with the disconnected vertices to capture
the successive indirect impacts until there are no more dependencies.
The vertices that have lost connection are recorded, so that indirect
impacts can be mapped.

Another metric that has been integrated into the model is a cal-
culation for end degree, which is a modified calculation of vertex
degree. Here, we designate end degree as the total number of end users
connected to a particular vertex in the network. This is a helpful metric
to identify critical nodes from an end-user perspective. We calculate
end degree for both the fully functional system and the impacted
system (including both direct and indirect impacts). With this, we can
understand the overall loss in connection throughout the system from
an event. Further, we can provide insight to the utilities both in terms
of which nodes lose the most service and which still have connections
following an event.

This process, shown in Fig. 1, provides an approach to determine
the indirect impacts that result from an event, including impacts on
the infrastructure, the end users, and the system as a whole. The next
section details the use of the model on a real-world network.

2.3. Case study

In this case study, the effects of a range of potential coastal flooding
events on three interconnected systems in Christchurch, New Zealand
are investigated: the electric power network, the water supply network,
and the wastewater network.

2.3.1. Background
Ōtautahi/Christchurch, the second largest city by urban population

in Aotearoa New Zealand, is a low-lying, coastal city on the eastern
coast of New Zealand’s South Island (Fig. 2). There are roughly 392,000
inhabitants within an area of approximately 295 square kilometers,
resulting in a population density of about 1300 people per square
kilometer. The city has two rivers flowing through it, the Avon River
through the city center and the Heathcote River on the south side,
which flow into an estuary and make certain areas more prone to
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Fig. 2. Map of Ōtautahi/Christchurch in New Zealand, highlighting the downtown area
and larger infrastructure nodes.

flooding from both fluvial and coastal events. Christchurch experienced
severe disruptions from earthquakes in 2010 and 2011, due to ground
motion as well as liquefaction [46], and wildfires in the Port Hills
surrounding the city in 2017 [47], and it is threatened by coastal haz-
ards (such as coastal flooding, coastal erosion, and rising groundwater),
tsunamis, and landslides [48], which may become more common as the
climate becomes warmer [49,50]. As such, it is a relevant case study
for our model.

2.3.2. Coastal flooding
We focus this case study on coastal flooding, which is a relevant

hazard for many communities along shorelines that will only intensify
with climate change [51]. These events are often described in terms
of their average recurrence interval [ARI], which is an indication of
how many years are expected on average to be between events. For
example, a 100-year ARI for a coastal flooding event would reflect the
extent and severity of the flooding that would be expected about once
every 100 years. This hazard is exacerbated by sea level rise [SLR],
which can make the flooding event more frequent and/or more severe.

The data in this study for coastal flooding is based on storm-
tide-driven extreme sea levels [ESL]. ESLs occur from a combination
of mean sea level [MSL], storm tide (which incorporates high tide,
meteorological effects, and monthly sea level anomaly), the wave setup
at the shoreline, and SLR. In this study, we used ESL inundation
maps from [52] for nine ARIs (2, 5, 10, 20, 50, 100, 200, 500, and
1000 years) and 0.1 m SLR increments up to 3 meters above present-
day MSL. The maps were created using a static ‘‘bathtub’’ model
and local LiDAR digital elevation models [DEMs] to map the extent
and depths for inundation areas hydraulically connected to coastlines.
4

Fig. 3. Diagram of the components and connections in the Christchurch case study.

These models have been developed for the entirety of New Zealand’s
coastal urban areas, which includes Christchurch, at a resolution of 2 m.
Further information on the methodology behind developing the coastal
flooding maps can be found in [52].

2.3.3. Data
The infrastructure data used in this case study includes the electric

power network [EPN], water supply network [WSN], and wastewater
network [WWN] for Christchurch. The EPN contains transmission grid
exit points, zone substations, network substations, and distribution
substations. The WSN is made up of potable water supply/storage
reservoirs and pump houses. The WWN has one wastewater treatment
plant and pump houses (separate from the WSN). The three networks
have dependencies on themselves, as well as on each other, notably on
the EPN since certain nodes in the water and wastewater networks rely
on the electricity grid for power. The end user nodes are determined
via proxy, based off of the water meters throughout the city. These
include residential, commercial, and industrial users. Within the model,
we assume each of these have an independent dependency on the three
utilities, meaning that one utility failing does not necessarily mean that
the other utilities have failed.

The connections among the utilities and end user nodes were pri-
marily automated based on closest proximity by road network distance,
since most urban utility infrastructure is underneath or alongside roads.
A few of the connections were updated following engagement with the
utility providers. The specific dependencies between the various system
components is depicted in Fig. 3.

Using these inputs as the system, the model was run for several
coastal flooding hazard scenarios, varying both ARI and SLR. A hazard-
specific parameter that can be varied in the model is the flooding depth
at which an element is considered exposed (and thus nonfunctional).
These depth thresholds can be different for each of the infrastructure
networks as well as for the end users, but for this case study, it is
assumed that if a node has any depth of flooding, it is at risk of failing.
In practice, this could result from an operator safely shutting it off
or from loss of service due to water exposure. The thresholds can be
adjusted in order to capture the vulnerability, as opposed to exposure,
of the utilities or households, informed by either fragility curves or by
the service provider’s own experience and knowledge about their assets.
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Fig. 4. End degree for the three infrastructure networks when fully functional. For the EPN, the size of the dot reflects the size of the substation. For the EPN, WSN, and WWN,
the grid exit point, the water supply storages, and the wastewater treatment plant, respectively, are shown as triangles.
Fig. 5. Exposed infrastructure nodes during a coastal flooding event with an ARI of 10 years and no SLR. The colors indicate depth of exposure.
3. Results

To understand interdependence, the first step is to understand how
many users depend on each of the assets under investigation. We show
this in Fig. 4, which displays the infrastructure’s end degree for the
initial, fully functional EPN, WSN, and WWN networks. To reiterate,
this degree value represents the number of end users that are connected
to that node, where red colors indicate a greater number of dependent
end users than green colors. The infrastructure is spatially dispersed
regarding end degree, yet some infrastructure nodes appear to be
susceptible to even a mild coastal flooding event (i.e., ARI of 10 years
and no SLR), shown in Fig. 5.

We show the direct impacts from a coastal flooding event (with an
ARI of 10 years and no SLR) on our three infrastructure networks in
Fig. 5, highlighting nodes that are exposed to flooding, with the red
nodes indicating greater inundation depth from this event. For this
scenario, 142 EPN nodes, 12 WSN nodes, and 32 WWN nodes were
5

directly exposed, out of 4360, 216, and 418 total nodes, respectively.
As for the direct exposure on the end user nodes, 3639 out of 133,342
end users were exposed to the flooding, as shown in Fig. 6(a).

Shifting from the direct impacts to including indirect impacts,
Fig. 6(b) shows the loss in utility for the end users, differentiated in
color by which utility or utilities they have lost service of. The amount
of end users without service for each combination of loss in utility is
presented in Table 1, with the number of end users without at least one
utility constituting roughly 9% of the total end users.

For this case study, a sensitivity to different SLR scenarios (from
0 cm of SLR to 300 cm of SLR by 10-cm increments) as well as different
ARIs (2, 5, 10, 20, 50, 100, 200, 500, and 1000 years), both of which
impact the severity of the coastal flooding event, was performed. The
total number of end users directly impacted, indirectly impacted, and
impacted overall was calculated for each of these variations. Fig. 7
shows impacts on end users for each infrastructure system in the 10-
year ARI scenario as SLR increases. As there is a rise in sea level,
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Fig. 6. (a) Directly exposed end users during a coastal flooding event with an ARI of 10 years and no SLR. (b) End users without service after a coastal flooding event with an
ARI of 10 years and no SLR.
Fig. 7. Number of end users without service after coastal flooding events with an ARI of 10 years differentiated by utility as well as direct (in green) or indirect (in orange)
impact.
Table 1
Breakdown of the loss in service for end users after a coastal flooding event with an
ARI of 10 years and no SLR.

Utilities without service Number of end users

EPN, WSN, WWN 4698
EPN, WSN 354
EPN, WWN 679
WSN, WWN 1032
EPN 492
WSN 2262
WWN 1982
Total 11,499

the direct and indirect impacts follow different patterns due to the
system’s composition, which will be explained later. When comparing
the directly impacted properties to the total (directly and indirectly)
impacted properties for the 10-year ARI and no SLR scenario, we see
an increase of 71% for the electricity network, 129% for the water
6

network, and 131% for the wastewater network (Fig. 7). These percent-
ages are fairly constant as SLR increases, until the threshold at which
the indirect values start to decrease and number of exposed properties
overtakes the indirectly impacted properties. For the same 10-year ARI
and 0 cm SLR scenario, there is a 216% increase between the directly
impacted properties and the number of properties who lose at least one
utility.

Two points along the ‘‘total’’ line in Fig. 7 are spatially shown in
Fig. 8, which takes the 10-year ARI scenario and shows the jump in
properties impacted when comparing the 0 cm SLR scenario with the
30 cm SLR scenario. The properties in orange represent those that have
lost a utility with no SLR, while the properties in red represent the
additional impacted properties at 30 cm of SLR. A more severe, or less
frequent, ARI shifts the expected impacts, with a greater proportion of
end users impacted at lower SLR scenarios. This is shown for end users
who have lost at least one utility in Fig. 9 for a range of 3 different ARIs.

These results show how, using the methodology described, we are
able to model both the direct and indirect impacts, represented as loss
of service, from an event for an actual case study.
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Fig. 8. End users without electricity (left), water (center), and wastewater (right) for a coastal flooding event with an ARI of 10 years and no SLR (in orange) and additional
outages with an ARI of 10 years and 30 cm of SLR (in red).
Fig. 9. Number of end users without at least one service after coastal flooding events with an ARI of 10 years (left), with an ARI of 100 years (center), and with an ARI of
1000 years (right), differentiated by direct (in green) or indirect (in orange) impact.
4. Discussion

In our paper, we seek to answer (1) does considering indirect
impacts substantially change the assessment of residents impacted? and
(2) how are impacts spatially distributed throughout the community?

We have shown that in Christchurch, assessments that do not in-
clude the indirect impacts of coastal flooding are not only underesti-
mating the total impact from the event, but also missing the spatial
distribution of impacts from the event, both often at the expense of
understanding the community-level effects. Risk assessments that are
prepared before an event occurs will often try to capture the extent
of loss of service either by (a) modeling the direct exposure of the
infrastructure components or by (b) using historical statistics about loss
of service. However, both of these approaches fall short of capturing
the extent of impact from an event. The former is often done from
the perspective of the utility (i.e., since the model is based around the
infrastructure nodes), so does not accurately reflect the scope of the
impact on the community, while the latter does not discern between
the changes or updates in the system’s design.

An infrastructure exposure assessment relies heavily on the knowl-
edge each of the various utilities have available to them during and
after an event. Electricity providers are often capable of having near-
real-time data about the service they provide to users, while for water
7

or wastewater networks, their service knowledge may stop at the
extent of their own infrastructure nodes (e.g., pump houses or reser-
voirs) unless the utility providers have invested in a monitoring/sensor
network.

Using traditional statistical modeling may be useful for predicting
particular event impacts, yet often struggles to incorporate the un-
certainty that may occur over time (for both the disruption scenario
and for the system), falling outside of the training data set. This is
particularly relevant for impacts from climate change, as we can expect
both disruptive scenarios we have not yet experienced and future
development in urban environments.

Our work addresses the above shortcomings by assessing outages
throughout the infrastructure systems and the community in a real-
world case study. When considering the end users without service after
a coastal flooding event with an ARI of 10 years and no SLR, about 9%
of total end users have lost at least one utility and 3.5% of total end
users have lost all three utilities. Of those who have lost at least one
utility, only about a third were actually exposed to flooding, meaning
two thirds of the end users were impacted due to an indirect impact.
This difference is obvious when comparing the map of the exposed
end users (Fig. 6(a)), where the impacted nodes are clustered within
a tight vicinity of the rivers, with the impacted end users (Fig. 6(b)),
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where additional groups of properties appear as a result of the upstream
outages.

In addition to serving as a quick visualization for the number
and spatial distribution of affected end users, the results presented in
Fig. 6(b) also reveal a more detailed assessment of which utilities have
lost service. This is useful for emergency response situations, where
extra supplies (e.g., clean water, portable toilets, backup generators,
etc.) can be strategically deployed to at-risk areas and to provide an
estimate as to how many end users might need emergency housing or
accommodation.

These spatial results can be further interpreted by looking at the
plots of exposed properties, indirectly impacted properties, and prop-
erties with a total loss of service in Figs. 7 and 9. The lines representing
total impacts show that as SLR increases, the magnitude of impacts
increases sporadically. Breaking this down into direct and indirect
impacts for this system, the exposed end users steadily increase, while
the indirect impacts on end users drives the variation in total impacts.
The impacts of increasing SLR for properties experiencing at least one
outage (Fig. 9) have a similar trend as outages per utility (Fig. 7),
but have higher values of impacted end users for both indirect and
total outages due to the variation in spatial distribution of each of
the utility outages, which do not always overlap. The reason for the
main direct and indirect trends is that direct flooding consistently
impacts more properties as SLR increases, while large sections of the
community are indirectly impacted all at once when an infrastructure
node becomes exposed. Generally, indirect impacts increase as sea-level
rise increases until a threshold, when the exposure from the event over-
takes the indirectly impacted properties. Hence the peaks in indirect
impacts in Figs. 7 and 9. The sharp increases in the indirect impacts
line (also reflected in the total impacts line), reflect the non-linear
nature of cascading failures. In particular, these indicate that there
are subtle tipping points, or thresholds, inherent in our interconnected
urban infrastructure that contribute to cascading failures. When these
thresholds are surpassed, the impacts extend to a group of nodes (be
it infrastructure or end users), causing the number impacted to jump.
These tipping points are subtle in that they are not immediately obvious
when looking at our systems, yet have far-reaching second and third
degree impacts.

This can similarly be seen in Fig. 8, which compares the difference
in service of the 0 cm SLR scenario with the 30 cm SLR scenario for a
coastal flooding event with an ARI of 10 years. The cascading failure
phenomena is captured by the groupings of red nodes in the maps that
are not overlying any coastal flooding (indicated in blue) for the 30 cm
SLR scenario.

The inclusion of cascading failures in our risk analyses can help
us better understand the structure of our interconnected systems, as
well as the impacts on our communities. This updated approach to
impact assessments has implications for the utility operators, showing
them where there are vulnerabilities in the system, as well as providing
insight as to where to improve robustness in their infrastructure. For the
residents, these findings can help enhance community preparedness, by
advising high risk neighborhoods of possible outages as well as knowing
which provisions might be needed. Similarly, our results can guide
emergency response teams by indicating which areas are likely to be
impacted, informing them what might be needed in those areas, and
by giving them an estimate of the amount of supplies and emergency
accommodation needed.

5. Conclusion

Our infrastructure is becoming more complex as it becomes more
interconnected, resulting in more complex disruptions after an event
occurs. The cascading failures that originate from these interdependen-
cies are similarly intricate and difficult to model across networks. In
this paper, we argue that these indirect impacts, such as cascading
failures, should be incorporated in network-wide risk analyses, and
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provide a model to address this. We describe a methodology to assess
direct and indirect impacts on a set of interconnected networks and
end users and then apply this to the case study of Christchurch, New
Zealand. The results from this application show that depending on
the system, the indirect impacts of an event may contribute to the
majority of the loss in service when compared to the direct impacts
from the event. Risk assessments that neglect to include these indirect
impacts are thus vastly underestimating the impact from an event.
Another finding is that the outages of the various networks are not
evenly spatially distributed throughout the community, meaning that
different response and recovery measures may be needed. Such a city-
wide assessment of the impacts to its interdependent infrastructure has
not yet been performed, but we argue this is a key step in understanding
a system’s risk, particularly when faced with uncertain future scenarios
such as climate change.

Further application of this model could include developing a suite
of hazards to get a more complete picture of the risks threatening a
community. With the addition of other hazards, the links between the
nodes (e.g., pipelines and power lines) may play a more critical role
and thus would be needed to be modeled. Two other directions for
further investigation would be to include more detailed fragility curves
to better understand the vulnerability of various assets as well as to
incorporate the partial failure of nodes due to the loss of some network
components (e.g., overload of the power grid or insufficient pressures in
the water network). These applications all require more detailed data,
and thus the feasibility of general application to other case studies is
variable. Nonetheless, this study demonstrates how a simple data set
could be used to understand the cascading failures of an urban system.

Despite the intricacy involved with cascading failures, they can
provide critical insight into our systems and communities, both in their
design and their vulnerabilities. Better understanding these impacts
can help make more robust and resilient urban communities, and can
play a larger role in the assessment and response of disruptions to our
infrastructure.
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Fig. 10. Example of a directed acyclic graph.

Fig. 11. Associated adjacency matrix for the graph in Fig. 10.

Appendix A. Acronyms

ARI - Average recurrence interval
DEM - Digital elevation model
EPN - Electric power network
ESL - Extreme sea levels
MSL - Mean sea level
WSN - Water supply network
WWN - Wastewater network

Appendix B. Network analysis

The basis for modeling networks is through an adjacency matrix,
which are a mathematically convenient way to represent directed
and undirected graphs. Since the dependency in our networks is one-
directional (e.g. electricity is flowing from the grid to the households,
and water is flowing from the water supply to the households) and there
are no closed cycles within the network, our system is represented by
a directed acyclic graph Fig. 10.

The vertices, or nodes, in the graph are the row index and column
index (i.e. node 1 is represented by the first row and the first column),
9

while edges, also called arcs or links (which indicate dependence), are
represented by a 1 in the adjacency matrix Fig. 11. For each row, which
represents a node, a dependent connection on another node is shown
by placing a 1 in the column which that node is dependent on. For
example, if node 4 is dependent on both node 1 and node 2, then there
will be a 1 located in the adjacency matrix at row 4, column 1 as well
as at row 4, column 2. Considering the matrix as a whole, rows indicate
any dependence that node has on other nodes, while columns indicate
any dependents that node has on it.

For directed acyclic graphs, only the bottom left half of the matrix
could contain 1’s, while for undirected graphs and generic directed
graphs, both the bottom left and the top right half could contain 1’s.
A single adjacency matrix can represent multiple networks by simply
adding additional rows and columns for the number of nodes in the
other networks.

Once the matrix is set up, calculations can be run to acquire the
end degree, or how many dependents a particular node has, in order to
assess the initial state of the system. To simulate a loss in connection,
the values in the column of the node’s index can be changed to a 0,
recording the row number of those values that were turned from a 1 to
a 0. Subsequently, the row number of the values changed to zero in the
previous step can be used to change the dependent connections to 0, by
changing the values in that column number to 0. This is repeated until
there are no more dependents, recording those that have lost service in
each step. Calculations can again be run to see how many connections
have been lost due to the particular event, again through using the end
degree for this finalized, updated adjacency matrix.
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