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Abstract

Enormous public investment will occur as communities adapt to climate change. Much of this
investment will be irreversible and the future benefits are currently uncertain. The real op-
tions embedded in adaptation projects are therefore potentially important and their existence
needs to be incorporated into investment decision-making. Standard real options analysis is
inadequate for this purpose because the future arrival of information about climate change
is unlikely to conform to the stochastic processes typically used in real options analysis.
This paper presents a new framework that reflects current uncertainty about climate change
and how that uncertainty might change over time. Optimal investment depends on current
beliefs regarding the severity of future climate change, how quickly these beliefs are likely
to change in the future, and current economic conditions. Most of the net benefits of opti-
mal investment can be captured if investment timing is decided using a simple alternative
decision-making rule.

Keywords: climate change; adaptation; cost—benefit analysis; real options analysis

JEL classification numbers: G31, Q54, R42

1 Introduction

Adapting to climate change will require substantial investment of public funds over the coming
decades. Investment of this scale creates enormous potential for inefficient decisions involving
the timing, scale, and location of investment. Fortunately, modern decision-support tools can
potentially improve the efficiency of this investment. In particular, typical climate-change adap-
tation projects have the characteristics needed for real options analysis to be important: future
benefits are uncertain; reversing investment is costly, if it is possible at all; and decisions can be
spread over time as uncertainty is resolved. This paper presents a new real-options framework
for analysing investment decisions related to climate-change adaptation and demonstrates its
application using the example of a decision-maker tasked with upgrading an urban stormwater
system in response to climate change.

The paper makes three main contributions. First, it introduces a theoretical framework that
incorporates climatic and economic volatility in a single model. The main features of this frame-
work are the way that it models uncertainty about future climate change, how this uncertainty
evolves over time, and how this injects volatility into investment payoffs. Second, the paper
constructs an optimal investment policy for an adaptation problem in which the capacity of in-
frastructure to cope with extreme weather events is a continuous variable and the decision-maker
decides how quickly to increase capacity. The value of investment delay options is economically
significant, but the relative importance of climatic and economic volatility varies over time.
Third, the paper shows that almost all of the net benefits of investment can be captured if

*This research is funded by the Deep South Challenge as part of its Living With Uncertainty programme.
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investment timing is decided using a simple alternative to “full” real options analysis. If the
decision-maker uses this alternative rule, then she invests if and only if the present value of the
project’s benefits is greater than or equal to the sum of the investment expenditure and a spe-
cific approximation of the value of delaying investment. If investment decisions are made using
this alternative rule, then—for the parameterisation used here—almost all of the net benefits of
investment are received.

Turning to the first contribution, there is currently considerable uncertainty surrounding
future climatic conditions (Pindyck, 2021). Climate change happens slowly, we do not know
how much COsy and other greenhouse gases will be emitted over the coming decades, and we
are uncertain how the climate will change as a result. However, this uncertainty will fall over
time due to a combination of scientific progress, statistical evidence, and observing weather
patterns (van der Pol et al., 2017b). The arrival of new climate information will inject volatility
into forecasts, but recent research suggests that meaningful learning about some important
aspects of climate change will take 20-50 years to occur (Urban et al., 2014; Lee et al., 2017).
Intra-regime variability means that learning about some aspects of climate change will be even
slower (Kopp et al., 2014). The theoretical framework introduced in this paper models this
uncertainty by assuming that the outcome of climate change will match one of two possible
scenarios. The decision-maker observes a stream of information that she uses to continuously
update her subjective beliefs regarding the probability of each scenario holding. This injects
volatility into the payoff from delaying investment in an adaptation project. The arrival of new
climate information is slow at first, so this source of volatility is initially small, but accelerates
as the two climate scenarios diverge.

The use of Bayesian decision theory has a long history in environmental decision-making.
For example, in a paper that preceded the literature on real options analysis, Davis et al. (1972)
explicitly consider the option to delay choosing the capacity of a system of dikes in order to
gather additional data on actual river flows. Delaying investment allows the decision-maker to
update her beliefs regarding the parameters that affect the probability distribution of peak
annual river flows used to calculate the expected costs of flood damage. A small but growing
literature adopts a similar approach to issues surrounding climate change. For example, van der
Pol et al. (2014) analyse investment in flood-protection infrastructure using a model in which
uncertainty about the rate of water-level increase is completely resolved at a single future date.
In contrast, van der Pol et al. (2017a) assume that uncertainty is reduced, but not eliminated, at
a single future date. De Bruin and Ansink (2011) go one step further and use a model in which
uncertainty about the impact of climate change is eliminated in two steps, whereas Guthrie
(2019) assumes uncertainty falls gradually over time. One feature common to all of these papers
is that climate-induced volatility in investment payoffs comes from changes in beliefs about some
unobservable aspect of climate change. That is, volatility comes from the future arrival of new
information about the extent of climate change. This is a key feature of the approach adopted
here.

The paper’s second contribution is the construction of an optimal policy for increasing an
asset’s capacity to cope with extreme weather events. The benefits of investment depend on
the distribution of the severity of these weather events, which vary as more climate informa-
tion becomes available. Initially, climatic uncertainty falls slowly, so that most of the volatility
in the investment benefits results from fluctuations in an economic factor. However, climatic
uncertainty eventually begins to fall, which increases the volatility of the investment benefits.
Thus, the value of the option to delay investment varies over time, depending on the rate with
which new climate information arrives. The value of the delay option contains a second time-
dependent component, reflecting the trajectories of key climate variables under climate change.

"Woolley et al. (2020, p. 173) observe that projected sea-level rise in the near term for the four RCP scenarios
is so close that it may require another two decades of monitoring to conclusively determine which trajectory
applies.



This induces relatively fast growth in benefits in the short term, which slows down when the
climate approaches its new equilibrium. The optimal investment policy can be expressed in
several forms, including a threshold for the benefit—cost ratio. This threshold exceeds one by
a substantial margin, reflecting the value of the delay option. The threshold is initially high,
especially when the decision-maker believes climate change is going to be relatively severe, but
falls over time due to the declining growth rate in benefits. This is offset by the increased rate
with which new climate information arrives, which increases the investment threshold.

These results originate from the stochastic properties of the investment payoff, which ulti-
mately stem from the model of climate uncertainty. The paper thus contributes to the part of the
real options literature that investigates the implications of non-standard stochastic structures.
Most real options models assume that one or more exogenous state variables evolve according
to geometric Brownian motion, but some authors have explored different structures, especially
when considering investment in climate-change adaptation. For example, Truong et al. (2018)
assume bushfires occur with a Poisson intensity that is itself stochastic. In contrast, Guthrie
(2019) assumes the decision-maker learns about the underlying climate scenario by observing
the frequency of extreme weather events, which injects volatility into the payoff from delaying
investment. Most recently, Lee and Zhao (2021) build a real options model of climate-change
adaptation that combines a Brownian motion process with extreme events, represented by Pois-
son jumps with a hyper-exponential jump size distribution.

Finally, the paper’s third contribution is to show that most of the benefits of investment can
be captured using a simple alternative to “full” real options analysis. This is important because,
although the benefits from using real options analysis can be significant, it is regarded by many
practitioners as complex and resource-intensive (Dawson et al., 2018; Wreford et al., 2020). It is
not widely used, particularly when evaluating relatively small projects. This is serious because
much adaptation spending will fund relatively small projects under the jurisdiction of authorities
with limited analytical resources. The importance of the flexibility in these projects is too costly
to ignore. Decision-makers need alternative approaches that are simple enough to be useful for
evaluating small- and medium-scale adaptation decisions, yet retain a degree of economic rigour,
as recommended in recent reviews of decision-support tools for adaptation assessment (Watkiss
et al., 2015; Wreford et al., 2020). This paper provides one such approach.

Optimal investment involves comparing the present value of the benefits from investing and
the total cost of investing, which equals the sum of the investment expenditure and the present
value of the real option to wait and invest some time in the future. The alternative rule involves
replacing the “fully optimal” value of the delay option with its value assuming investment is
delayed until the best fixed future date. This is much simpler to calculate than the full option
value, because all that is required is a series of standard static cost—benefit calculations, one for
each possible future investment date. The approximate option value is the maximum of these
values. If the decision-maker uses this alternative rule, then she invests if and only if the present
value of the project’s benefits is greater than or equal to the sum of the investment expenditure
and the approximate option value. Equivalently, she invests if no fixed future investment date
implies a greater net present value than investing immediately.

Under the alternative policy, investment is delayed significantly past the date when the
present value of the benefits from investment equals the required expenditure. Nevertheless, it
still occurs earlier than under the welfare-maximising investment policy. However, for the next
few decades at least, the acceleration in investment is moderate. The calculation underlying the
alternative investment policy assumes the decision-maker will wait and invest at a fixed future
date, rather than exploiting future climatic and economic information as it arrives. That is,
the calculation underlying the alternative investment policy assumes the decision-maker delays
the investment, but not the decision when to invest—that is made now. This only introduces
substantial errors if there is a significant risk of new information arriving that would cause
the decision-maker to regret the investment decision that is implicit in the approximate option



value. For the situation we are examining, the prospect of such bad news is low, at least for
the foreseeable future. Due to the relatively low volatility of the economic factor and—for the
foreseeable future—the low volatility of the decision-maker’s beliefs regarding the magnitude of
climate change, there is very little chance that any subsequent information will be significant
enough to make the net present value of investing negative. In other words, if the decision-maker
uses the alternative rule, then she delays investment so long that there is little chance that she
will subsequently regret investing. It is not surprising that the added value from delaying the
decision is so small.

For at least the first 40 years, the welfare losses from adopting the alternative rule are small.
The welfare performance of the alternative investment rule is worse if the economic factor has
a lower expected growth rate or higher volatility. These situations increase the likelihood that
past investments will subsequently be stranded, which increases the importance of delaying the
investment decision and reduces the performance of the alternative investment rule. If there is
more noise in the climatic signal, and therefore less volatility in the decision-maker’s beliefs,
the probability of post-investment stranding is smaller, which improves the performance of the
alternative investment rule. The effect is insignificant in the short term, because in this case the
climate scenarios are so similar. However, for longer horizons, there is a noticeable improvement
in the alternative rule’s performance when the climatic signal is noisier. Although the alternative
investment rule performs reasonably well over a wide range of parameter values, there will likely
still be situations where it results in a significant reduction in welfare. In particular, if the
economic factor is volatile enough and grows slowly enough, and if there is enough noise in the
climatic signal, then there is still a place for “full” real options analysis.

This paper’s final contribution is therefore to the subset of the real options literature that
tries to link the technique to real world decision-making. Some papers in this literature attempt
to derive forms of real options analysis that are simple enough to be useful in practice. For ex-
ample, Copeland and Antikarov (2003, 2005) have developed a “marketed asset disclaimer” ap-
proach that is popular among some corporate-finance practitioners of real options analysis. The
remaining papers in this literature attempt to interpret pragmatic decision-making techniques
as tractable approaches that (deliberately or otherwise) capture the value of the real options
embedded in projects. For example, McDonald (2000) and Malchow-Mgller and Thorsen (2005)
evaluate various rules of thumb from a real options perspective, whereas Boyle and Guthrie
(2006) and Wambach (2000) concentrate on the payback method.

The rest of the paper is organised as follows. Section 2 presents the model set-up. The the-
oretical framework has two main components: a description of how beliefs about future climate
change evolve over time, which is developed in Section 3, and a description of how the benefits
of investment are calculated, which is developed in Section 4. The analysis of the model begins
in Section 5, which derives the conditions that an optimal investment policy must satisfy. It con-
tinues in Section 6, which investigates these optimal policies, and Section 7, which compares the
performance of these policies with a simpler alternative. Finally, Section 8 offers some concluding
remarks. All proofs are contained in an appendix.

2 DModel set-up

A decision-maker is responsible for upgrading an urban stormwater system. The system’s ca-
pacity at any given date t equals ¢;, which the decision-maker is able to increase over time by
investing in system upgrades. At any point in time, she can increase capacity by any positive
amount Ag by spending ¢ - Agq, for some constant ¢ > 0. There is no limit to the number of
times that investment can occur, but increases in capacity are irreversible. The decision-maker’s
objective is to minimise the present value of all relevant costs, including flooding costs and the
investment expenditure incurred when upgrading the system. The social discount rate is the
constant 7.



There are two possible climate scenarios, “good” and “bad.” At any date ¢, the expected
cost associated with flooding over the next increment of time equals I'g(q;, t)x; dt if the good
scenario holds and I'y (g, t)x; dt if the bad scenario holds, where I'y and I', are decreasing, convex
functions of ¢. That is, extra capacity reduces expected flooding costs, but the amount of the
reduction becomes smaller as ¢ becomes larger. The economic factor x;, which is observable,
evolves according to the geometric Brownian motion

diL't = ux¢ dt + oxy dft,

where 4 and o are known constants and & is a Wiener process. This variable determines the
expected economic consequences of flooding for any given capacity of flood defences. It reflects
the depreciated replacement cost of the vulnerable assets, clean-up costs, disruption costs, en-
vironmental damage, and health effects.

The decision-maker does not know which climate scenario holds. Instead, she assigns a prob-
ability to each scenario being the true one and then updates these probabilities as more infor-
mation about the state of the climate arrives. The expected flooding cost between dates ¢ and
t + dt, as measured by the decision-maker, therefore equals

(peDo(qr, t) + (1 — pe)Ty(ge, 1)) 24 dt,

where p; denotes the date ¢ probability that the bad climate scenario holds. The new climate
information takes the form of a noisy signal of the average annual maximum one-day rainfall
At.2 At any given date t, \; takes the values \,(t) and Ay(t) in the good and bad scenarios,
respectively, for some functions Ay and A,. The decision-maker observes the path of a variable,
z¢, which evolves according to

dZt = >\t dt+9d<t, (].)

where 6 is a constant and (; is a Wiener process that is uncorrelated with &.3

3 Processing future climate information

In equation (1), A; equals Ay(t) if the bad scenario holds and A,(t) if the good scenario holds.
The information contained in the observed path of z; allows the decision-maker to update her
beliefs regarding the climate scenario. Over the next short period of time lasting At years, the
decision-maker observes

Azt Oe

- At =,

At VAL
where € ~ N(0, 1). That is, she observes the sum of the unobservable value of the climate factor,
At, and a noise term that is (approximately) normally distributed with mean zero and variance
62 /At. If 6 is relatively small, then the noisy signal is relatively precise and the observed value
of Az /At gives a relatively accurate estimate of A\;. In this case, provided that A\y(t) and A\, (¢)
are not too similar, the noisy signal will give the decision-maker a relatively clear indication of
which climate scenario actually holds.

The next lemma describes the evolution of the decision-maker’s beliefs.*

2In principle, the actual flooding costs reveal additional information about the climate scenario. We ignore this
information here, mainly in the interests of tractability but also because the actual flooding cost is potentially
a very noisy indicator of the expected flooding costs. We are implicitly assuming that the noise here is so great
that the information content is negligible.

3This significantly simplifies the analysis. For example, if the noise term d¢; were correlated with the shock that
influences the path of the economic factor, d¢;, then the decision-maker would need to incorporate the information
content of growth in the economic factor when updating her subjective probability that the bad scenario holds.

4Appendix A.1 contains a heuristic proof of this result. See Harrison (2013, pp. 138-141) for more on Brownian
models of dynamic inference.



Lemma 1 The subjective probability that the bad climate holds evolves according to

pe(1—pe)(Np(t) — Ag(t))
0

e (2)

dp; =

As Lemma 1 makes clear, the decision-maker’s beliefs regarding which climate scenario holds
evolve stochastically. Uncertainty surrounding future values of the subjective probability that the
bad scenario holds will turn out to be an important source of volatility and a crucial determinant
of the option value embedded in typical adaptation projects. Equation (2) shows that p; will
be most volatile when the identity of the actual climate scenario is most uncertain, because
the coefficient p;(1 — p;¢) is maximised when p; = 1/2. In this situation, the new information
contained in the path of z; has the most effect on p;. In contrast, when the decision-maker is
almost certain the good scenario holds (p; = 0) or she is almost certain the bad scenario holds
(pt = 1), new information will have little effect on her beliefs, so that the volatility of p; will be
small. Equation (2) also shows that p; will be more volatile when 6 is smaller; that is, when the
signal contains little noise, so that the decision-maker can rely on the information contained in
the observed path of z; to update her beliefs. Finally, if the difference between Ay () and A\y(t) is
smaller then p; will be less volatile. In this case, even a relatively precise signal may be unable
to distinguish between the two possible values of the climate factor, so the decision-maker will
be unable to infer much about the identity of the underlying climate scenario.

Consider the situation facing Dunedin City Council, New Zealand, which is planning to spend
$35 million in the next ten years upgrading its stormwater system in order to reduce flooding
during times of heavy rain (Dunedin City Council, 2019, 2022).% Suppose the annual maximum
one-day rainfall for the area is drawn from a generalised extreme value distribution and that
the good and bad scenarios correspond to RCP2.6 and RCP8.5, respectively. In order to focus
attention on the key issues, further suppose that only the location parameter of this distribution
varies over time and across scenarios; the scale and shape parameters are constant and take
the same values in the two scenarios. The initial distribution matches the estimated distribution
generated by the NIWA High Intensity Rainfall Design System (HIRDS).% Its location, scale, and
shape parameters equal 75.71, 22.54, and 0.1908, respectively. If we allow the location parameter
to increase over time to match the means of the distributions generated by HIRDS under RCP2.6
and RCP8.5. then the paths for the average annual maximum one-day rainfall are

Ap(t) = 132.95 — 39.03¢0-0083¢

and”
Ag(t) = 98.03 — 4.12¢ 00788t

The blue curve in Figure 1 plots the current density function of the annual maximum one-day
rainfall. The yellow and green curves plot the density functions in 2095 in the good and bad
scenarios, respectively. Climate change shifts the distribution rightwards, with the distribution
shifting further in the bad scenario than in the good scenario. For example, Dunedin’s average
annual maximum one-day rainfall is currently 94mm. Under RCP2.6 and RCP8.5, this increases
to 98mm and 112mm, respectively, in 2095. Figure 2 plots the two possible paths for the average
annual maximum one-day rainfall A(t). The two trajectories are reasonably similar in the short

SHughes et al. (2019) evaluate the impact of climate change on New Zealand stormwater systems.

SExtreme rainfall projections for any New Zealand location can be viewed at https://hirds.niwa.co.nz/. Data
from the “Leith at Pine Hill” site (ID 508510), which we use here, is also used by the Otago Regional Council to
monitor Dunedin’s rainfall.

THIRDS generates separate distributions for the periods 2031-2050 and 2081-2100. The bad- and good-scenario
paths used here for the location parameter have the functional form ao—a1pe™ 20" and ag—ai e~ 297, respectively,
with the parameters chosen so that: Ay(t) matches the mean of the RCP8.5 distribution at ¢ € {0,20,75};
Ay (0) = A4(0); and the limiting value of Ay(t) matches the mean of the RCP2.6 distribution at ¢ = 75.



Figure 1: Distribution of the annual maximum one-day rainfall in Dunedin
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Notes. The blue curve plots the estimated density function for the annual maximum one-day rainfall
in Dunedin, New Zealand, given current climatic conditions. The estimated density functions for the
same variable in 2095 are shown by the yellow (good scenario) and green (bad scenarios) curves.

term, but then they diverge. This means there is not much potential for observation-based
learning in the short run, but there will be in the long-run. This will have an impact on the
value of a project’s embedded flexibility.

Suppose the decision-maker initially believes the two climate scenarios are equally likely (that
is, p = 1/2) and she observes the path of the variable z; described in equation (1), with § = 15.
That is, each year the decision-maker observes a signal of the average annual maximum one-day
rainfall with a standard deviation of 15mm. The left-hand graph in Figure 3 plots two simulated
paths for the subjective probability that the bad scenario holds, both starting at py = 1/2.
The right-hand graph plots the corresponding paths for the average annual maximum one-day
rainfall, p;\y(t) + (1 —pi) Ag(t). Very little happens to the subjective probabilities during the first
ten years, due to the similarities between the two scenarios during this period. However, the
subjective probabilities are highly volatile for the next 50 years. The true scenario is revealed
by the time 80 years have passed, but even as late as 50 years from now, there is uncertainty
about which scenario holds. The behaviour of the average annual maximum one-day rainfall
in the right-hand graph illustrates how changes in beliefs drive the volatility of the expected
rainfall intensity (and, ultimately, the volatility of the project’s expected benefits). The expected
value of the average annual maximum one-day rainfall evolves smoothly for the first ten years,
but is volatile for the next 50 years. Eventually, the average annual maximum one-day rainfall
moves smoothly along one of the two possible paths—but which path it will be is not known for
several decades. Figure 3 highlights the three distinct phases of the decision-maker’s information
about climate change. Initially, there is substantial uncertainty about climate change, but too
little information arriving for the uncertainty to fall significantly. This is followed by a period of
substantial volatility, during which the decision-maker’s uncertainty falls. The simulated paths
for p; start to diverge during this period because the possible paths for the average annual
maximum one-day rainfall start to diverge, so that the noisy signal contains more information.
Finally, the uncertainty is largely resolved and the decision-maker knows which path the climate
is evolving along.

This behaviour is confirmed by the graphs in Figure 4, which plot the distributions of p



Figure 2: Evolution of the average annual maximum one-day rainfall in Dunedin
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Notes. The graph plots the evolution of the average annual maximum one-day rainfall in Dunedin
under the two climate scenarios.

for four horizons.® The top left-hand graph shows that ten years from now, the decision-maker
has learned little about the true climate scenario: the subjective probability is close to its initial
value of 1/2 for all 10,000 simulations. The top right-hand graph shows there will be considerable
variation in this probability 20 years from now; the bottom left-hand graph shows the very
beginning of a bimodal distribution 40 years from now. The bottom right-hand graph shows
that by the time 80 years have passed, the decision-maker will be almost certain about the true
climate scenario: the subjective probability will be extremely close to zero or one.”

4 Measuring expected flooding costs

4.1 Flooding-cost function

The functions I'y(q,t) and T'y(g,t) determine the expected flooding cost, given the stormwater
system’s capacity ¢ and the current date ¢. In practical applications, this function is often cal-
culated using detailed hydrological modelling in a two-step process. The first step is to calculate
the macroscopic damage function, which gives the flooding cost as a function of the scale of any
breach of the stormwater system. The second step averages over all possible breach scales.
When calculating the cost associated with a breach, we need to know how the event affects
the surrounding land. Specifically, for each potential flooding event, we need to know the depth of
the floodwaters on each unit of land in the locality. Analysts often use either resource-intensive
hydrodynamic modelling or simpler flood-fill algorithms to determine the distribution of the
depth of floodwaters in a locality as a function of the amount by which the peak rainfall exceeds
the capacity of the stormwater system.'® This information is combined with a depth-damage

8The graphs are constructed by simulating 10,000 paths for p each starting with p = 1/2 and spanning 80
years, using the same method to simulate each path as is used to construct the paths in Figure 3. We extract the
values of p at each t € {10, 20, 40,80} from each simulated path. The graphs in Figure 4 plot the histograms for
each of these slices.

91f the decision-maker initially believes that the bad scenario is twice as likely as the good one, then the
long-run distribution of p will be a discrete distribution with p = 1 being twice as likely to occur as p = 0.

10F100d-fill algorithms identify all land that is below the assumed water level and is not cut off from the water



Figure 3: Two simulated paths for the decision-maker’s beliefs regarding the climate scenario
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Notes. The left-hand graph plots two simulated paths for the subjective probability that the bad
scenario holds, both starting at po = 1/2. The right-hand graph plots the corresponding paths for
the expected value of the climate factor, p: Ao (t) + (1 — pr)Ag(£)-

function, which estimates the cost of damage to a flooded property as a function of the depth
of the floodwaters on that property.!’ Summing these costs over the entire locality yields the
macroscopic damage function, which gives the total flooding cost as a function of the scale of
the breach. That is, the macroscopic damage function equals

M(b) = /0 b, Dn(l) di,

where m(b, 1) is the number of properties that experience a flood with level [ following a breach
with scale b, n(l) - x is the economic cost if a property experiences a flood with depth [, and we
integrate over all possible flood levels. Taking the scenario-specific expected values of M (b) over
all possible breach scales b gives the functions I'y, and T'y.

In order to focus on the role of climate uncertainty, and not the hydrological characteristics
of a particular locality, we assume the macroscopic damage function takes the form M (b) =
max{0, b}, where the breach b equals the annual maximum one-day rainfall R minus the capacity
of the local stormwater system ¢. Suppose the distribution functions of the annual maximum
one-day rainfall are Fy(R;t) and Fy(R;t) in the bad and good scenarios, respectively, at date t.
The expected flooding cost at date ¢ therefore equals x¢I'y(g, t) in the bad scenario, where

[e.e]

Ty(gr,1) = Eymax{0, R, — q1}] = / (R — q) FJ(R; 1) dR.

qt

The definition of I'g(gy, t) is similar. As required, these are decreasing and convex functions of the
system’s capacity, ¢;. That is, investing in greater capacity reduces expected flooding costs, but
with diminishing returns. We will see in Section 5 that the optimal investment policy depends on
the marginal avoided flooding cost. The next lemma shows that this quantity has a particularly
simple form.

source by land that lies above the assumed water level. That is, low lying areas that are not connected to the
flood source are assumed to be unaffected by the flood. Boettle et al. (2011) use a flood-fill algorithm to construct
a flooding cost function for Copenhagen; Prahl et al. (2018) use one to estimate flooding cost functions for the
600 largest European coastal cities

" Damage to buildings is just one component of flooding costs. Depth-damage functions can also be constructed
for damage to infrastructure. Similarly, depth—disruption functions can be constructed to estimate the costs of
the disruption to the transport sector caused by flooding events (Pregnolato et al., 2017).



Figure 4: Distribution of the future probability that the bad scenario holds, when py = 1/2
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Notes. The graphs plot the distributions of p for four different horizons. Each histogram is drawn
using 10,000 paths for p, each starting with p = 1/2 and each calculated with the method used to
construct Figure 3.

Lemma 2 Suppose the stormwater system has capacity q¢ and the annual mazimum one-day
rainfall has distribution function F(R,t) at date t. If the macroscopic damage function takes
the form max{0, R; — q;}, then increasing the stormwater system’s capacity by the infinitesimal
amount dq reduces the date t expected flooding cost by x(1 — F(q,t))dq. |

Climate change shifts the distribution of R rightwards, which reduces F(g;t) and therefore
increases the marginal benefit of investment.

The cost functions I', and I'y will not give perfect results for any particular situation, but
they will be a good approximation in many situations. For example, the functional form of I',
and I'y generates expected flooding costs that are a decreasing function of the capacity of the
current flood-protection infrastructure, and which are larger when the annual maximum one-day
rainfall is more variable. Furthermore, the benefits of investment are negligible when the system’s
capacity is high, they are substantial when it is low, and investing in additional capacity has
diminishing returns. These are all realistic properties and play important roles in determining
optimal investment policies.

4.2 The economic factor x;

Recall that the expected flooding cost over the next increment of time equals T'y(qy, t)x¢ dt if the
bad scenario holds and I'y(g;,t)x; dt if the good scenario holds. The role of the exogenous state
variable x; is to capture the effects of intertemporal changes in the depreciated replacement cost
of the vulnerable assets, as well as changes in clean-up costs, disruption costs, environmental
damage, and health-related costs. The behaviour of x; determines the answer to the question:
how would the costs associated with a flooding event change if an identical event occurred
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one year later? In order to keep the model tractable, we assume that x; evolves according to
geometric Brownian motion. All we need to specify regarding this variable are the drift ;1 and
volatility o of this stochastic process.

We select values for the model’s parameters to approximate the situation facing Dunedin City
Council’s upgrade of its stormwater system. The investment programme will involve improving
maintenance of stormwater grates, upgrading pumping stations, installing backflow prevention
valves, and replacing old wastewater pipes. The slow rate of climate change means this ten-
year programme will be just one part of the ongoing work needed to maintain and upgrade the
stormwater system in response to climate change. The benefits generated by system upgrades
comprise avoided flooding costs. The main sources of uncertainty surrounding the magnitude of
these benefits are climatic (the frequency and severity of extreme rainfall events) and economic.
Although the overall budget is significant, much of this investment programme can be scaled up
or down as new information about future flood risk arrives.

Many factors potentially influence how x; evolves over time. Perhaps the most important
influence is the depreciated replacement cost of vulnerable assets (Merz et al., 2010; Penning-
Rowsell et al., 2013). Over time, this quantity fluctuates because of a combination of depreciation
of the existing assets, spending on maintenance and improvement of existing assets as the econ-
omy grows, investment in additional assets, and changes in the prices of inputs into the repair
and replacement process. Let (), denote the level of an index of real construction costs, N, the
number of dwellings, and DRC,, a depreciated replacement cost index, all at the end of year n,
and let the constant § denote the rate of depreciation. If M;,1 dwellings are added during the
next year, then one estimate of the depreciated replacement cost of assets at the end of year

n + 1 equals'?
Chi1 M1
DRC,i 1 =DRC,| —==](1-9¢ .
RCp11 RC(C’n>( —l—Nt)

The term inside the first pair of large brackets on the right-hand side captures the effect of
changes in construction costs; the term inside the second pair of large brackets captures the effects
of depreciation and additions to the housing stock. We assume a depreciation rate of 6 = 0.015
and combine a national construction cost index with building consent data for Dunedin City to
construct DRC,, for the period 1996-2022.'3 This will be our main proxy for the economic factor.
However, changes in local GDP, or some other measure of economic activity, are also potentially
a useful proxy for changes in the disruption costs associated with flooding.'* Changes in local
population might give useful information about changes in the health effects and number of
fatalities associated with flooding. Changes in traffic volumes might give useful information
about disruption costs when transport infrastructure is affected by flooding.

We estimate the drift and volatility for a collection of proxies for the economic factor and
then make an overall assessment of plausible values of i and . One issue that arises with most
of these proxies is that they are unlikely to evolve according to geometric Brownian motion. In
particular, shocks to these variables are typically serially correlated, whereas geometric Brow-
nian motion assumes that changes in any two non-overlapping time periods are independent.
Positive serial correlation in annual growth rates means that a relatively small shock to the cur-
rent depreciated replacement cost of vulnerable assets can have a larger impact on the long-run
depreciated replacement cost because it leads to a persistent sequence of changes in subsequent

12Gtatistics New Zealand reports building consents per capita. We assume a constant household size of 2.45
individuals and calculate the implied value of M;4+1/N;. Comparing census data from 2006 and 2018 shows that
the average household size of a Dunedin household fell from 2.49 to 2.40 over this period.

13This approach will overestimate the average growth rate in the vulnerable housing stock if Dunedin’s growth
has occurred in areas not prone to flooding. However, most of the growth in the proxy variable comes via the
construction cost index, so the effects of intra-city variations on the parameter estimates are likely to be minor.

14To be clear, we would not be using the change in GDP in the aftermath of a flood to measure the cost of
flooding. Rather, we would be supposing that if GDP grows by ten percent over time, then—all else equal—
expected disruption costs due to flooding grow by ten percent as well.
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Table 1: Proxies for the drift and volatility of the economic factor x;

Variable Long-run mean Effect of a one std dev shock on Alogx
of Alogx 1 2 3 5 10 o0
Depreciated replacement cost 0.015 0.023 0.039 0.049 0.061 0.069 0.070
Regional GDP (total) 0.029 0.026 0.035 0.038 0.040 0.040 0.040
Regional per capita GDP (total) 0.017 0.024 0.030 0.032 0.032 0.032 0.032
Regional per capita GDP (total) x local pop’n 0.022 0.026 0.034 0.036 0.037 0.037 0.037
Regional GDP (owner-occupied property) 0.047 0.038 0.054 0.061 0.065 0.066 0.066

Notes. We fit an AR(1) model to annual changes in the natural logarithm of each variable and then
calculate the effect of a one-standard deviation annual shock over the subsequent ten years.

years. Therefore, the short-run volatility of these quantities will likely underestimate the vari-
ability of their long-run values—and the latter is more important for the types of investment
projects we consider. In particular, the value of the real option to delay investment ultimately
depends on the volatility of the present value of the flow of a project’s benefits, rather than the
short-term volatility of the flow itself, and shocks to long-run benefit flows give a good indication
of the former.

In order to address this issue, we focus on the long-term effects of shocks to the variables
above. Specifically, for each variable, we fit an AR(1) model to annual changes in the natural
logarithm of the variable and then calculate the effect of a one-standard deviation annual shock
on the variable over the subsequent ten years. Table 1 reports the results of this procedure.
The first row shows the results for the depreciated replacement cost index, which suggest that
u = 0.015 and o = 0.070 are reasonable estimates of the drift and volatility of the economic
factor. The remaining rows of Table 1 show results for various measures of local economic
activity. GDP is available only for the wider Otago region (rather than just Dunedin City), so
we report results for regional GDP, per capita regional GDP, and the product of per capital
regional GDP and the population of Dunedin city. We also report results for the component of
regional GDP corresponding to the services generated by owner-occupied property. The values
of the drift parameter are higher than the drift of depreciated replacement cost, which is not
surprising because none of these measures of economic activity allow for depreciation. In contrast,
the values of the volatility parameter are lower than the volatility of depreciated replacement
cost, which reflects the relatively high volatility of real construction costs. Bearing in mind the
importance of depreciation and construction (repair) costs for the calculation of flooding costs,
we adopt u = 0.015 and o = 0.070 as our baseline parameter values. The three curves in Figure
5 plot the density functions of the distribution of z; for t € {10,20,40}, assuming that xo = 1.
Even though the volatility might seem low, the long time frames involved in the decision-maker’s
investment problem mean that there will be considerable variation in the economic factor over
relevant time frames.

We set the discount rate equal to r = 0.05, consistent with the (real) social discount rate
recommended by the New Zealand Treasury (Treasury, 2022). Without any loss of generality,
we choose the units of expenditure so that the cost of building new capacity is ¢ = 1.

5 Theory

This section describes the approach the decision-maker uses to evaluate investment policies. She
chooses the capacity of the stormwater system at each date, subject only to the constraint that,
due to the irreversibility of investment, this quantity can never decrease. There are no fixed
upgrade costs, the marginal cost of upgrading the system is constant, and the expected flow of
flooding-related costs,

(pelp(ge, t) + (1 — pe)Lg(qe, t)) 4,
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Figure 5: Distribution of future values of the economic factor
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Notes. The graph plots the density functions for the distribution of the economic factor at dates 10,
20, and 40, assuming its current value equals 1. The drift and volatility parameters equal p = 0.015
and o = 0.070.

is a decreasing, convex function of the system’s capacity. The decision-maker can therefore
restrict attention to policies of instantaneous control, as the best policy of this type achieves
an overall level of costs that is less than or equal to that resulting from any other investment
policy.'®

When evaluating investment policies, the decision-maker seeks to minimise the present value
of all future flooding-related costs, including expenditure on upgrading the stormwater system.
We denote this quantity by W (¢, p,x;q). This section presents the conditions that determine
optimal investment policies using a sequence of three lemmas to develop the formulation of
the decision-maker’s problem that we will subsequently solve. Many papers use smooth-pasting
conditions to describe these conditions, but we use variational inequalities instead as these are
more closely related to the numerical approach used to solve the decision-maker’s investment-
timing problem.'® The first of these lemmas presents the variational inequalities that the value
function W satisfies if the decision-maker adopts an optimal upgrade policy.

Lemma 3 If the decision-maker adopts an optimal upgrade policy, then the value function
W (t,p,x;q) satisfies
¢+ Wy(t,p,z;9) > 0

and
DW (t,p,x;q) — W (t,p,x;q) + (pLp(g, t) + (1 — p)Ly(g,t))x >0

15See Dixit (1993) for an introduction to instantaneous control policies and Stokey (2008) for a more detailed
discussion. The optimality of an instantaneous control policy for a similar problem is proven on pp. 360-367 of
Dixit and Pindyck (1994). If the investment cost features a fixed cost, so that increasing system capacity by Ag
requires expenditure of f 4 ¢ - Aq for some positive constant f, then the decision-maker should adopt a policy of
impulse control, which involves lumpy (rather than continuous) investment.

16 Appendix B outlines the numerical method used here, which is based on the operator-splitting approach of
Tkonen and Toivanen (2004, 2009).
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The first condition holds with equality in the investment region and the second condition holds
with equality in the waiting region. |

The left-hand side of the first inequality in Lemma 3 equals the marginal effect of investment
on the present value of all future costs. If the decision-maker increases capacity slightly, she incurs
immediate expenditure of ¢ and the present value of all subsequent costs changes by W, (that
is, it falls by —Wj,). Provided the decision-maker has adopted an optimal policy, the sum of
these two terms is either positive (when it is optimal not to invest) or zero (when the decision-
maker is investing). In contrast, the second inequality in Lemma 3 captures the effect of delaying
investment. If the decision-maker holds capacity constant for the next dt units of time, she incurs
expected flooding costs of (pI'y(q,t) + (1 — p)T'y(q,t))z dt and the present value of future costs
increases by DW dt. The amount by which the sum of these two terms exceeds rW dt equals the
cost of waiting rather than following an optimal upgrade policy. Therefore, the left-hand side of
the second inequality is positive when investing is optimal and is zero when waiting is optimal.

It is convenient to focus on the marginal value of capacity. Rearranging the first-order Taylor
series expansion of W (t, p, z;q + dgq) shows that

W(t,p,z;q) = (=Wq(t,p,x;q) dq) + W (t,p,z;q + dq) + o(dq)

as dg — 0. That is, the present value of the future costs associated with a stormwater system
with capacity q, W (t, p, z; q), equals the sum of the present value of the costs associated with the
marginal unit of capacity, —Wy(t,p, x; q) dg, and the present value of the future costs associated
with an upgraded system with capacity g + dgq, W (¢, p, x; ¢ + dg). The next lemma presents the
variational inequalities satisfied by the marginal value, W,.

Lemma 4 If the decision-maker adopts an optimal upgrade policy, then Wy (t,p, x;q) satisfies

Wy(t,p,z3q9) +¢>0

and
oly(q,t oly(q,t
DWq(t,p,x;q) — rWy(t, p, x;q) + p&) +(1 —10)M <0
dq dq
everywhere. The first condition holds with equality in the investment region and the second
condition holds with equality in the waiting region. |

The most useful feature of the variational inequalities in Lemma 4 is that ¢ only appears
explicitly via the nonhomogeneous term in the second inequality.'” That is, ¢ assumes the same
status as parameters such as the scale and shape of the rainfall distribution—it can be treated
as a constant that affects the level of the future flooding costs. This means that, rather than
solving for an optimal upgrade policy for the stormwater system as a whole, the decision-maker
can solve for an optimal policy for investing in each additional unit of capacity individually. In
other words, the problem can be broken into a collection of simpler problems, each one involving
deciding when to install a particular unit of capacity.

The decision-maker’s problem in Lemma 4 is equivalent to the problem of when to exercise a
standard investment-timing option of the type introduced by McDonald and Siegel (1986). In this
equivalent problem, there is no flow of benefits (or costs) until the incremental upgrade option
is exercised, but exercising the option initiates a flow of avoided flooding costs. Specifically,

'"This is most obvious if we use new notation for the dependent variable W,. Writing W, = U, for some function
U, makes it clear that ¢ appears only via the nonhomogeneous term.
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exercising the option incurs lump-sum expenditure of cdq and initiates a perpetual benefit flow

of
dT(q,t) 0l'y(q,t)
(RN g el :
(p 9 +(1-p) 94 x dg

If this option is exercised at date ¢, the present value of this benefit flow equals

(prop(t; q) + (1 — pe)vg(t; q)) ¢ dg,

where - OTy(q.5)
up(liq) = — e (r=m(s—H) 20D g 3
o) == [ o Q
and - oT
vg(t;q) _ / 6—(r—/,n)(s—t) Q(Qas) ds. (4)
t dq

We can isolate the present value of the incremental upgrade option by comparing the present
value of all future costs with and without this option. The present value of all future costs equals
W (t,p,x;q) if the decision-maker has the option to install all units of capacity greater than g.
In contrast, it equals

(pvo(t; @) + (1 = p)vg(t; q)) wdg + W (t, p, x5 q + dg)

if she only has the option to install all units of capacity greater than ¢ + dg, where the latter is
the sum of the present value of the flooding costs that the upgrade option would avoid and the
present value of all other costs. The present value of the incremental upgrade option is therefore
equal to

Vt,p,ziq)dg = ((pvs(t;q) + (1 — p)vg(t; q)) xdg + W (t, p, ;9 + dq)) — W (t, p, z;q)
= ((pvo(t;q) + (1 — p)vg(t; q)) = + Wy(t, p, x;9)) dg.

The next lemma describes the variational inequalities satisfied by this present value.

Lemma 5 If the decision-maker adopts an optimal upgrade policy, then the present value of the
incremental upgrade option satisfies

V(t,p,z;9) > (puo(t;q) + (1 — pvg(t;q)) z — ¢

and
DV (t,p,z;q) —rV(t,p,7;q) <0

everywhere. The first condition holds with equality in the investment region and the second
condition holds with equality in the waiting region. |

Lemma 5 describes the investment-timing problem that we will solve and is the basis of
the analysis in the rest of the paper. That is, rather than solving the overall system upgrade
problem described in Lemma 3, in principle we solve it one “incremental upgrade project” at a
time. The variational inequalities in Lemma 5 are typical for optimal stopping problems. The
first one reflects the fact that the investment payoff equals the present value of the flooding costs
avoided due to the increased capacity, minus the investment expenditure. The second inequality
reflects that fact that—from the perspective of the incremental upgrade option—there is a zero
net-benefit flow during the period prior to investment.

To conclude this section, consider the special case where the model’s parameters take the
values specified in Sections 3 and 4. The left-hand graph in Figure 6 plots the benefit flow
multipliers 781“%7((1,10 and —argi(q’t), whereas the right-hand graph plots the investment payoff
multipliers vy(t; ¢) and vg(t;q) defined in equations (3) and (4), all as functions of t. That is,
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Figure 6: Investment benefit functions
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Notes. The left-hand graph plots the benefit flow multipliers —argi(q‘t) and _argai(q,t)’ whereas the

right-hand graph plots the investment payoff multipliers vy (¢;q) and v4(¢; q) defined in equations
(3) and (4), all as functions of ¢t. The solid and dashed curves correspond to a system capacity of
175mm/day and 185mm/day, respectively.

if the bad scenario holds, the benefit flow generated by an incremental system upgrade equals
the product of the height of the blue curve in the left-hand graph and the current level of the
economic factor x. The present value of the benefits generated by an incremental system upgrade
equals the product of the height of the blue curve in the right-hand graph and the current
level of the economic factor x. If the good scenario holds, the multipliers are the heights of
the corresponding yellow curves. The solid and dashed curves correspond to a system capacity
of 175mm/day and 185mm/day, respectively. The benefits are more valuable when the bad
scenario is more likely to hold and when the system’s current capacity is relatively low. Delaying
investment does not significantly increase the multiplier if the good scenario holds, but can lead
to a very significant increase if the bad scenario holds.

6 Optimal investment

Each incremental upgrade option is a perpetual American call option that gives its holder
(the decision-maker) the right to pay ¢ in exchange for a perpetual flow of benefits. The most
important properties of such options are traditionally illustrated using graphs that plot the
present value of the option as a function of the present value of the underlying asset. Figure 7
adopts a similar approach. Each graph plots the present value of an incremental upgrade option
as a function of the economic factor = for a different combination of the stormwater system’s
current capacity (the columns) and the evaluation date (the rows). The blue curves show results
when the decision-maker is certain the good scenario holds, the green curves show results when
she is certain the bad scenario holds, and the yellow curves show results when she believes the
two scenarios are equally likely. If = is to the left of the black dot on the curve corresponding
to the current level of p, then the decision-maker should delay investment; if it is to the right of
this point, then she should invest immediately.

Figure 7 reveals considerable information about the optimal investment policy. Consider the
top pair of graphs, corresponding to the situation at date 0. In both cases, the dots are clustered
together, showing that the optimal investment threshold for the economic factor is reasonably
insensitive to p. However, the three points shift rightwards when the stormwater system’s capac-
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Figure 7: Present value of incremental upgrade options
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Notes. Each graph plots the present value of an incremental upgrade option as a function of
the economic factor for a different combination of the stormwater system’s current capacity (the
columns) and the evaluation date (the rows). The blue curves show results when the decision-maker
is certain the good scenario holds, the green curves show results when she is certain the bad scenario
holds, and the yellow curves show results when she believes the two scenarios are equally likely to
hold. The black dots split each curve into waiting and investing regions.

17



ity increases. That is, the investment test becomes more demanding as g increases.'® In contrast,
the dots are spread out in the middle pair of graphs, which show the situation at date 20, indi-
cating that the optimal investment threshold becomes more sensitive to p over time. If the bad
climate scenario is more likely, then the investment threshold is less demanding. The dots are
spread out even further in the bottom pair of graphs, indicating that the optimal investment
threshold’s sensitivity to p grows as we look further into the future. The dots shift left as we
move down each column; that is, the investment test becomes less demanding as we move further
into the future.

The reason why the optimal thresholds in Figure 7 are initially almost independent of p can
be traced back to the properties of climate change. We might expect the optimal investment
threshold to be sensitive to p, as this parameter determines the expected future path of rainfall
intensity, which affects the benefit flow initiated by investment. However, the project’s benefit
flow initially has a high expected growth rate and low volatility, as suggested by Figures 2 and 6.
This means that the only reason to invest immediately is that the short-term benefits are large
enough to compensate for incurring expenditure now rather than at some future date.'® These
short-term benefits are independent of p because of the short-term similarity of the possible
paths for rainfall intensity, as can be seen in Figure 2.2° As we move further into the future,
the expected growth rate of the benefit flow falls and climate volatility rises, so that long-term
considerations become increasingly important to the decision-maker. This is reflected in the
optimal investment threshold becoming more sensitive to p as t increases.

Figure 7 also gives an indication of just how valuable the decision-maker’s investment-timing
option is. In particular, the height of each dot equals the present value of the option at the time
it is exercised. That is, the height shows the amount by which the present value of the project’s
benefits must exceed the required expenditure in order for investment to be optimal. Recall
that this expenditure is ¢ = 1. Thus, the graphs in Figure 7 show it can be optimal to delay
upgrading the system until the present value of the benefits from investing exceed the required
expenditure by 50% or more. The graphs show that—when the investment test is expressed
in these terms—the threshold for investment can be much more demanding when the climate
scenario is more likely to be bad; that is, the dots on the green curves are significantly higher
than their counterparts on the yellow and blue curves.

The form of the model means it is natural to express the investment policy as a threshold
Z(t, p; q) for the economic factor. This formulation leads to a particularly simple rule for exercis-
ing an incremental upgrade option: if the system currently has capacity ¢ then it is optimal to
exercise the incremental upgrade option the first time that x; > Z(¢, pt, ¢). If the decision-maker
adopts this policy then she will invest in just enough new capacity at each date to prevent x;
from exceeding Z (¢, pt, ¢:). That is, she follows a policy of barrier control. This means the ca-
pacity of the stormwater system may remain constant for long periods of time, but its capacity
will start to increase again once flooding-related costs rise to a sufficiently high level. Investment
can be triggered by increases in x (that is, the costs avoided due to investment rise), p (that is,
floods become more likely), and ¢ (that is, the progression of climate change).

Investment policies are often implemented using a threshold for the benefit—cost ratio (BCR),
which equals the present value of a project’s future benefits divided by the present value of the
investment expenditure. Recall that the present value of the incremental upgrade option’s future
benefits equals

(prvs(t; @) + (1 — pe)g(t; q)) 24

8This is essential for us to be able to treat each incremental upgrade as an independent project. It means
that the decision-maker will exercise the option to upgrade a system with capacity of 175mm/day before she will
upgrade an otherwise identical system with capacity of 185mm/day.

9That is, the long-term benefits generated by an incremental system upgrade appear in both the payoff from
investing immediately and the value of waiting. They therefore have little effect on the current investment decision.

20Tf the paths started at different levels or diverged more rapidly, then the present value of the short-term
benefits would be more sensitive to p, which would lead the z threshold to be more sensitive to p.
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Figure 8: Investment threshold in terms of the benefit—cost ratio
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Notes. The graph plots the investment threshold for the benefit—cost ratio, B(t7 p; q), as a function
of t. The solid curves show the optimal threshold when ¢ = 175 for the indicated levels of p. The
dotted curves show the optimal threshold when ¢ = 185, for the same levels of p.

at date t, if the system has capacity ¢ at that date. Dividing this expression by the lump-sum
investment expenditure shows that the benefit—cost ratio from undertaking “project ¢” at date
t equals

2 peon(t9) + (1= po)vg(t; @) - (5)

C

BCR(t7pt7 Tt Q) =

The decision-maker will therefore upgrade a system with capacity ¢ the first time the corre-
sponding benefit—cost ratio is greater than or equal to

B(tapta Q)

P () ft:9) + (1 pvg(t:0)). (6)

where & (¢, pt, q) denotes the optimal investment threshold for z.
The threshold for the benefit—cost ratio has a useful economic interpretation. The amount
by which it exceeds one equals the value of the real option to delay investment, expressed as a
proportion of the required investment expenditure. For example, if the delay option had no value
then the optimal investment threshold would be B=1. Figure 8 plots the investment threshold
for the benefit—cost ratio, B(t,p;q) in equation (6), as a function of the date ¢, for five different
probabilities that the bad scenario holds. The solid curves show the threshold when ¢ = 175;
the dotted curves show the threshold when g = 185.2! The value of the real option to delay
investment is economically significant. That is, across a range of dates and climate probabilities,
investment is only socially optimal if the benefits are very significantly greater than the required
expenditure (at least 60% higher in all cases). As we will see shortly, the causes of this high
option value vary. In the near term, the high threshold for the benefit—cost ratio is due to the

2I'When expressed in terms of the BCR, the investment test is slightly less demanding when the system’s
capacity is higher. However, this is not inconsistent with the approach of treating each incremental upgrade as
an independent project, because Figure 7 shows the decision-maker will exercise the ¢ = 175 option before she
exercises the ¢ = 185 option.
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possibility that the climate scenario is bad (so that the expected growth rate in benefits is high);
in the longer-term, the high threshold for the benefit—cost ratio is due to uncertainty about the
climate scenario (and the resulting high level of p-volatility).

In the short-term, the BCR threshold is a strongly increasing function of p. That is, the
investment test is more demanding when the bad scenario is believed to be more likely. Equiva-
lently, the option to delay investment is initially more valuable when the bad scenario is believed
to be more likely. Consider the situation when p = 1 (so that the bad climate scenario holds) and
the level of the economic factor is such that the present value of the project’s benefits is slightly
greater than the investment expenditure. If the decision-maker had a now-or-never investment
option then it would clearly be optimal to invest. However, suppose investment can be delayed.
The high initial growth rate in the project’s benefit flow means that delaying investment by one
year reduces the present value of the benefit flow, measured at date 0, by just 2.8%, whereas
the present value of the investment expenditure falls by 4.9%. Delay will therefore be optimal.
Indeed, the present value of the benefits from immediate investment will need to exceed the
investment expenditure by a considerable margin before immediate investment is optimal. In
contrast, if p = 0 (so that the good climate scenario holds), delaying investment by one year
reduces the present value of the benefit flow, measured at date 0, by 3.2%. The decision-maker’s
incentive to delay investment is therefore not as strong in this case, the delay option has less
value, and the optimal BCR threshold for optimal investment is lower.

Now consider what happens as t increases, starting with the extreme cases where p = 0 and
p = 1 (that is, when the true climate scenario is known with certainty and p is therefore constant).
In both cases, the optimal BCR threshold falls steadily to a common limiting value. Volatility in
the economic factor induces volatility in the investment payoff, which contributes to the value
of the real option to delay investment. However, economic-factor volatility is constant over time
and the investment option is perpetual, so the time dependence of the optimal BCR threshold
must come from another source. That source is the declining growth rate of the project’s benefit
flow. As time passes and rainfall intensity converges to its new long-run level, the investment
payoff multiplier (vy(t) or vy(t)) increases, but at a declining rate. All else equal, this means
that the incentive to delay investment falls as t increases. For example, from the point of view
of date 100, delaying investment by one year in the bad scenario reduces the present value of
the benefit flow, measured at date 100, by 3.2%, so that delay is more costly at date 100 than it
is at date 0. Once rainfall intensity has converged to its long-run value (so that the investment
payoff multiplier has converged to its long-run value), then the value of the delay option derives
solely from the behaviour of the economic factor. The investment payoff is proportional to a
stochastic variable that evolves according to geometric Brownian motion. As in the standard
investment-timing model of McDonald and Siegel (1986), the optimal threshold for the BCR
equals 3/(8 — 1), where (3 is a simple function of the parameters yu, o, and r. For this example,
B =1.61.22

The behaviour of the optimal BCR threshold is more complicated in the intermediate cases
where 0 < p < 1 (that is, when there is uncertainty about the true climate scenario). The effect
of the high growth rate in rainfall intensity (in this case, expected rainfall intensity, given that
there is climate uncertainty) remains, which contributes to the optimal BCR threshold falling
over time. Now, however, there is an offsetting effect, which appears during the period when
much is learnt about the state of the climate. During this period, the possible paths for rainfall
intensity A(t) start to diverge, which means that the noisy signal of the true level of rainfall
intensity is more informative. That is, climate uncertainty starts to fall and p volatility starts
to rise, which leads to an increase in the volatility of the investment payoff. As is the case with
other investment-timing problems, when the investment payoff becomes more volatile, the value

22The BCR threshold converges to its limiting value much more quickly when p = 0 because the trajectory of
rainfall intensity converges to its long-run value much more quickly in the good climate scenario (when p = 0)
than in the bad scenario. That is, the high-growth period lasts for a much shorter period of time.
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of waiting increases, which explains the increase in the BCR, threshold as time increases. This
increase in BCR threshold works in the opposite direction to the one discussed above (for the
cases with p = 0 and p = 1). At first it is small, so the BCR threshold is decreasing in ¢, but
eventually it dominates the other effect and the BCR threshold is increasing in ¢.23

Each entry in Table 2 reports the optimal BCR threshold for a different combination of
parameters. The first row of the table shows results for the baseline parameter values and the
large panels vary one parameter at a time, holding all other parameters at their baseline values.
The table shows that the BCR threshold exceeds one by an economically significant margin
across a large selection of parameter values. Unless the drift in the economic factor is very small,
the optimal investment policy requires that the present value of the project’s benefits exceed
investment expenditure by at least 50%. Premia of 80% and above are common. It is optimal
to wait for a larger BCR when the economic factor has higher volatility and a higher expected
growth rate. In the short-medium term, the amount of noise in the climate signal has a negligible
impact on the optimal BCR threshold. If investment does not occur for many decades, then the
optimal BCR threshold is slightly decreasing in the amount of noise in the signal (and therefore
slightly increasing in the volatility of the probability that the bad scenario holds).

7 Approximating the optimal investment policy

The focus so far has been on the decision-maker’s optimal investment policy, which is derived
using real options analysis. The benefits from using real options analysis can be significant, but
it is not widely used, particularly when evaluating relatively small projects. This is especially
serious because much adaptation spending will fund relatively small projects under the jurisdic-
tion of authorities with limited analytical resources. The importance of the flexibility in these
projects is too costly to ignore, so we need approaches that are simple enough to be useful for
evaluating small- and medium-scale adaptation decisions, yet retain a degree of economic rigour.
This section evaluates the potential of one such approach.

7.1 Approximating the value of the delay option

Recall that it is optimal to invest as soon as the net present value from investing is greater than or
equal to the value of the option to delay investment, provided that the option value is consistent
with the decision-maker adopting an optimal investment policy in the future. Equivalently, it is
optimal to invest as soon as

(peros(t; ge) + (1 — pe)vg(t; a@r)) 3¢ > ¢+ V(E, pe, ¢, qr), (7)

where the option value V (¢, ps, x4, q;) satisfies the conditions in Lemma 5. That is, the present
value of the project’s benefits (the left-hand side of equation (7)), must be greater than or equal
to the opportunity cost of investment. This opportunity cost equals the sum of the investment
expenditure and the present value of the delay option that is destroyed by the act of investment.
It is this option value that is difficult to calculate in practical applications. Therefore, this
subsection describes a relatively straightforward approach to estimating V (¢, ps, x4, ¢;) that, in
many situations, results in a close approximation to the correct value.

The alternative approach to valuing the delay option considered here assumes that if the
decision-maker delays investment then she will invest at the best fized future date. This is
obviously not an optimal policy, but we are only using this assumption for the purposes of

23The BCR threshold reaches very high levels for large ¢t when 0 < p < 1. In this situation, the true climate
scenario will be revealed very quickly, so that the investment payoff is very volatile and the option value of waiting
is very high. However, this combination of circumstances has little practical relevance as the climate scenario will
almost certainly be known by then (or soon will be), in which case p will be very close to either 0 or 1. However,
the results are included here to explain the non-monotonic nature of the BCR thresholds over horizons that are
of practical relevance.

21



"SON[eA dUI[eSeq II9Y) d)B) PIISI[ 9SO} uey}
19730 s1vjetrered [y "UOIJRUIqUIOD Iojourered pajyedtpur 9yj} 10§ Oljel 3S09—41Jausq a1} 10 P[oysaIy) juatrisoaul rewrrydo o) sprodar o[qe) o) Ul AI3Ud Yors ‘S9J0N]

P81 LLT 9.1 €81 €8T GL'T L1 LLT LT 89T 991 L1 G100 0L00 ¢9c
06T 64T 9.1 €8T 18T LLT L1 LLT VLT 69T 991 L1 G10°0 0L0°0 0Og
86T 78T 9.1 €81 6T 18T LT LLT 9L°T 0L°T 991 LT G10°0 0L0°0 4T
01°C 16T 8L°T €81 86T 981 LT LLT 08'T €L L9°T L1 ¢10°0 0L0°0 OT
(454 g0'c 18T €8T 01°C G6°'T LLT LLT 18T QLT 89T LT G10°0 0L00 ¢
@ ‘UOIYRULIOJUT 9)RTII[D UL ISION
0LC gge 67'C c9'C 19°C Lv'e 6€°C 16°¢ 8¢€'C 1€°¢ 8C'C 6€°C Gc0'0 0L00 4T
6¢°C ¢l'e 90°¢ q¢1'e 0¢'¢ 80°¢ 66T L0°¢ c0'¢ 96°T 16°T 00°¢ 0c0'0 0L00 4T
86T 81T 9.1 €81 61 18T LT LLT 9L'T 0L°T 991 L1 g10'0 0L0°0 4T
8L'T 991 9¢'T 09T cL'T 191 €41 96T 84T €41 8V'T €a'T 010°0 0L0°0 4T
€91 0s'T 7T 47! 6S°T 8Y'1 6¢°T 7T 91 07’1 9¢e'T 8¢'T G000 0L00 4T
71 ‘1090%] DTWIOU0Id JO PLI(]
90'C 16°T 98°'T o'l €0°C 68°T 18T 98°'T 18T 6L°T GL'T 18T 610’0 060°0 QT
€0°¢ 88T 18T 18T L6'T P81 LLT 81 18T VLT 0L°T 9.1 g10°0 0800 4T
86T 78T 94T €8T 6T 18T LT LLT 9.1 0L°T 991 L1 ¢10'0 0L0°0 4T
96°T 08'T €L'T 8L'T 06°T LLT 89°1T E€L'T EL'T 29T c9'1T 89T GI10°'0 090°0 ¢GT
61 8L°T 691 9L'T 81T LT 991 LT 69'1 €91 86T 991 ¢10'0 0900 41
0 ‘I090®J OTWIOU0Id JO AIYR[OA
86T 81T 9.1 €81 6T 181 LT LLT 9L'T 0L°T 991 L1 ¢10°0 0L0°0 4T

ased ouIfesey
0C1 =% 08=% 0F=1% 0=1 0C1 =% 08=% 0F=% 0=1 0Z1=7 08=% 0F=% 0=1
gLo=d 0s0=4d ¢go=4d n 0 0

O13RI 1S00-11joUeq 91} 10J P[OYSAIY) ' Sulsn juatiseAul rewnyd() :g 9[qe],

22



estimating the option value. If the decision-maker does delay investment, then she will continue to
evaluate the project, gather relevant climatic and economic information, and use it to recalculate
the option value—but each time she calculates the option value, she will assume that any delayed
investment will occur at the best fixed future date. That is, the scope of this assumption is strictly
limited to calculating an approximate value for the delay option.

Suppose it is currently date ¢ and the decision-maker decides to exercise the incremental
upgrade option at some fixed future date t 4+ s. The present value of the investment payoff at
the time investment occurs equals

(Pegsvb(t + 83q) + (1 — Prgs)vg(t + 83q)) Toys — c.
As shocks to p and z are independent, the implied date-t present value equals
Z(s) = e~ (rmws (prov(t + s39) + (1 — pe)vg(t + s59)) zr — e "c.

Therefore, if the decision-maker were to adopt a policy of investing at the best fixed future date,
then the present value of the delay option would equal sup,.q Z(s). We use this quantity as our
approximation of the true option value, V (¢, pt, x¢, ¢¢), in equation (7).

The decision-maker invests as soon as the present value of the benefits from investment is
greater than or equal to the sum of the investment expenditure and sup,.q Z(s). This rule can
be expressed in terms of a threshold for z, as shown in the next lemma.

Lemma 6 Suppose that p > 0. The present value of the benefits from exercising the incremental
upgrade option at date t is greater than or equal to ¢ + sup,~o Z(s) if and only if z; is greater
than or equal to the threshold T*(t,p:), where

rc
1 —peFy(ge,t) — (1 = pe) Fylqe, t)’

where Fy, and Fy are the cumulative distribution functions of rainfall intensity in the bad and
good climate scenarios, respectively. |

j:*(tapt) =

Note that the threshold in Lemma 6 depends on p;. Thus, even though the underlying
calculation of the value of the delay option assumes that investment occurs at a fixed future
date, when implemented this rule results in an investment date that depends on the probability
that the bad scenario holds. In particular, if the decision-maker delays investment, then she will
take advantage of new information that arrives after this decision. The fixed-date assumption
applies only to the calculation of the option value.

The investment threshold in Lemma 6 has a very natural interpretation. Lemma 2 implies
that if the incremental upgrade option is exercised at date ¢, then the immediate benefit flow
equals

(e(1 = Fy(qe, 1)) + (1 = pe) (1 = Fy(gr, 1)) 20 = (1 — peFo(qe, t) — (1 — pe) Fylqi, t)) .

The investment rule in Lemma 6 is therefore equivalent to exercising the incremental upgrade
option if and only if the immediate benefit flow is greater than or equal to rc. That is, for the
situation considered here, the decision-maker just has to compare the initial benefit low and
the opportunity cost of the funds needed to invest, both measured over the next increment of
time.

Each graph in Figure 9 plots the investment threshold for the economic factor as a function of
the probability p for a different date t. The three curves correspond to three potential investment
rules. The bottom (blue) curve shows the threshold when the decision-maker adopts a policy
of investing as soon as the present value of the project’s benefits is greater than or equal to
the required investment expenditure. This “zero NPV” policy has the same form as the policy
described by equation (7) if the value of the delay option is set equal to zero. The middle (yellow)

23



Figure 9: Three different investment thresholds in terms of z
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Notes. Each graph plots the investment threshold for the economic factor as a function of the
probability p for a different date t. The blue curve shows the threshold when the decision-maker
adopts a policy of investing as soon as the present value of the project’s benefits is greater than
or equal to the required investment expenditure. The yellow curve corresponds to the approximate
policy in Lemma 6, in which the value of the delay option is calculated assuming investment occurs
at the best fixed future date. Finally, the green curve corresponds to the optimal investment policy.

curve corresponds to the approximate policy in Lemma 6. It also has the same form as the policy
described by equation (7), but in this case the value of the delay option is calculated assuming
that investment occurs at the best fixed future date. Finally, the top (green) curve corresponds
to the optimal investment policy, in which the option value in equation (7) is calculated assuming
the decision-maker adopts an optimal investment policy in the future. Figure 10 shows the same
information, but in terms of the benefit—cost ratio.

The three investment policies represented in Figures 9 and 10 have progressively more de-
manding investment thresholds. To see why, consider equation (7). The zero-NPV policy sets
V' = 0. In contrast, the approximate policy sets it equal to the present value of the investment
payoff assuming that investment occurs at the best fixed future date. This quantity is positive,
explaining why the second threshold is greater than the first. Similarly, the optimal policy sets
V equal to the present value of the investment payoff assuming investment at the optimal future
date. This quantity must be greater than or equal to the present value assuming investment
occurs at the best fized date, which is why the third threshold is at least as great as the second
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Figure 10: Three different investment thresholds in terms of the benefit—cost ratio
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Notes. Each graph plots the investment threshold for the benefit—cost ratio as a function of the
probability p for a different date t. The blue curve shows the threshold when the decision-maker
adopts a policy of investing as soon as the present value of the project’s benefits is greater than
or equal to the required investment expenditure. The yellow curve corresponds to the approximate
policy in Lemma 6, in which the value of the delay option is calculated assuming investment occurs
at the best fixed future date. Finally, the green curve corresponds to the optimal investment policy.

threshold. The approximate policy underestimates the value of the delay option and therefore
accelerates investment. The question we will investigate shortly is whether this acceleration leads
to an economically significant reduction in overall welfare.

Even under the alternative policy, investment can be delayed significantly past the date when
the present value of the benefits from investment equals the required investment expenditure.
Consider the situation at date tg = 0 if the decision-maker believes the two climate scenarios
are equally likely (po = 1/2). This is the situation shown in the top left-hand graphs in Figures
9 and 10. The breakeven level of the economic factor is g = 0.76. The very steep time profile of
avoided flooding costs (evident in the left-hand graph in Figure 6), means that the short-term
benefits from investing are low for a breakeven project. For the example here, if investment is
delayed for exactly five years, the expected flooding costs during the period leading up to the
delayed investment are just 0.1430, whereas the delay reduces the present value of the investment
expenditure by 0.2212. For a ten-year delay, the corresponding figures are 0.2670 and 0.3935.
Thus, significant delay is appropriate even for a project currently in a breakeven position. In
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this situation, if x equals the breakeven level, then the best fixed investment date is actually
t* = 24.14. The present value of investing at this date—mo matter what happens between now
and then—is 0.1691. In summary, the high growth rate in the initial benefit flow means that
it can be better to delay investment a considerable length of time beyond the date when the
present value of the project’s benefits cover the required investment expenditure even under the
suboptimal policy in which option valuations assume a fixed investment date. This explains the
large gaps between the blue (breakeven policy) and yellow (best fixed date policy) curves in
Figures 9 and 10.

An important question to consider is whether incorporating the value of the arrival of new
information in the value of the delay option leads to a large additional delay. The gaps between
the yellow and green investment thresholds in Figures 9 and 10 suggest that, for the next
few decades, the resulting delays are moderate. When the gaps subsequently increase, it is for
levels of p that indicate considerable remaining uncertainty about the true climate scenario. The
distributions of p in Figure 4 suggest that these situations are unlikely to occur.?* In summary,
incorporating the value of the arrival of new information in the value of the delay option leads
to moderate delays in investment, but is unlikely to lead to large additional delays.

The intuition for this behaviour can be found in the two values of the delay option. The
approximate value assumes the decision-maker will wait and invest at a fixed future date, whereas
the correct value assumes she will follow an optimal future investment policy that exploits future
climatic and economic information as it arrives. That is, the first option value assumes the
decision-maker delays the investment, but not the decision when to invest—that is made now.
In contrast, the second option value assumes the decision-maker delays the decision as well. The
second option value will only be significantly higher than the first one if there is a significant
risk of new information arriving that would cause the decision-maker to regret the investment
decision that is implicit in the approximate option value. For the situation we are examining, the
prospect for such bad news is low, at least for the next few decades. Recall from the discussion
following Lemma 6 that under the approximate approach, the decision-maker invests when the
flow of benefits equals rc. By this stage, the net present value of investing is much greater than
zero. Due to the low volatility of the economic factor and—for the next few decades—the low
volatility of the probability p, there is very little chance that any subsequent bad news will be
bad enough to make this net present value negative. In other words, if the decision-maker uses
the approximate rule, then she delays investment so long that there is little chance that she
will subsequently regret investing. It is not surprising that the added value from delaying the
decision is so small.

This explanation is closely related to the “bad news principle” of irreversible investment
(Bernanke, 1983). When investment can be delayed, the decision-maker’s willingness to invest
immediately depends on the potential for future events to strand the asset. That is, of all possible
future outcomes, it is only the unfavourable ones (the “bad news”) that affect the current
propensity to invest. This happens because a decision-maker who does not invest sacrifices a
short-term benefit flow in return for the option not to invest in the future. This option will have
no value if future information favours the project. Its value comes from the prospect that future
information will lead the decision-maker to regret having invested previously. For the situation
we are examining, there is very little chance that any subsequent bad news will be bad enough to
make this net present value negative. In other words, if the decision-maker uses the approximate
rule, then she delays investment so long that there is little chance that she will subsequently

24The assumption that = evolves according to geometric Brownian motion implies that economic volatility is
constant over time. In contrast, the volatility of the probability p varies over time. The pattern of widening gaps
between yellow and green curves in Figures 9 and 10 suggests that the results are being driven by climate volatility.
Further evidence can be found along the p = 0 and p = 1 boundaries, which show what happens when there is
no climate volatility. Consistent with economic volatility being constant, the gap between the yellow and green
thresholds is almost constant over time along these boundaries.
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regret investing.?®

7.2 Welfare implications of adopting an approximate policy

Our aim is to identify a simple decision-making rule that keeps the welfare costs of deviating
from optimal decision-making low. The relevant issue is whether welfare falls significantly if a
simple rule is used, not whether the resulting policy is greatly different from the optimal one.
Even if use of a simple tool results in a large error in investment timing, if the loss of welfare
is small then the decision-making rule may be suitable for practical use. In contrast, for some
projects a simple rule may potentially lead to a small error in investment timing but a large
loss of welfare. For these projects, the simple rule is not appropriate. This subsection therefore
uses the present value of future welfare to evaluate the performance of the policy described in
Section 7.1.

For this comparison, for each policy we need to calculate welfare, as measured by the present
value of the investment option. Welfare under the optimal policy is already calculated as part
of the construction of the optimal policy, when we solve the variational inequalities in Lemma
5. Construction of welfare under the approximate policy is more subtle. The policy is derived
by assuming that each time the decision-maker calculates the value of the investment option,
she assumes that investment occurs at the best fixed future date. However, this value is not the
value of the option if she actually adopts this policy. Consider the numerical example discussed
earlier when ¢ = 0, the two scenarios are equally likely (pg = 1/2), and the economic factor is
equal to the breakeven level (xg = 0.7647). In this situation, the present value of the investment
option implied by the best fixed future investment date was 0.1691. However, if the decision-
maker actually follows the approximate policy described in Lemma 6, then the present value of
the investment option will equal 0.2048. The difference between the two present values reflects
the value of the decision-maker’s ability to respond to future information. This flexibility has
value, even though her response will not be fully optimal. If she followed the optimal investment
policy instead, the value of the investment option would equal 0.2076 in this case.

Fortunately, calculating the value of welfare under the approximate policy is straightforward.
We simply calculate the present value of the investment option by solving the standard differ-
ential equation using the investment threshold in Lemma 6 in place of the optimal threshold.
The starting point is Lemma 5, which describes the variational inequalities we need to solve to
find the optimal policy. Now, however, we are simply calculating the present value of welfare
associated with a given policy. Therefore, the present value function satisfies the differential
equation

DV(t,p,x;q) —rV(t,p,x;q) =0

in the waiting region (that is, where x < 2*(¢,p)) and it satisfies

V(t,p,z;9) = (puo(t; @) + (1 — pvg(t;q)) z — ¢

in the investment region (that is, where > &*(¢, p)).

Figure 11 plots the value of the investment option at date ¢ = 80 as a function of the
level of the economic factor for three different levels of the probability that the bad climate
scenario holds. The solid curves show the value of the investment option if the decision-maker
adopts the optimal investment policy and the dashed curves show its value if she adopts the
alternative policy in Lemma 6 instead. The dashed grey lines show the investment payoffs. The
lower and upper points on each curve show the alternative and optimal investment thresholds,
respectively. In all cases, the height of the solid is curve is greater than or equal to the height of
the corresponding dotted curve. Investment occurs immediately when z is above the investment
threshold, so in this region the value of the option equals the investment payoff. As investment

25In this context, bad news is that climate change is less severe than expected or that the economic factor grows
more slowly than expected. In both cases, the project’s benefit flow is smaller than expected.

27



Figure 11: Value of the investment option under two investment policies
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Notes. The graph plots the value of the investment option at date ¢ = 80 as a function of the
level of the economic factor for three different levels of the probability that the bad climate scenario
holds. The solid curves show the option’s value if the decision-maker adopts the optimal investment
policy and the dashed curves show its value if she adopts the alternative policy in Lemma 6. The
dashed grey lines show the investment payoffs. The lower and upper points on each curve show the
alternative and optimal investment thresholds, respectively.

occurs too soon under the alternative rule, the dashed curves converge to the investment payoff
more quickly than their solid counterparts. This explains why the solid and dotted curves start
to diverge as x increases. The distance between the two curves at the point where the dashed
curve joins the investment payoff is one measure of the welfare that is lost if the decision-maker
adopts the alternative rule in Lemma 6: it is the present value of the investment option that is
lost, measured at the (premature) investment date.

Table 3 summarises the results of sensitivity analysis into the welfare losses that result from
adopting the simple investment rule in Lemma 6. Each entry reports the present value of welfare
that is lost, measured at the (premature) investment date, when following this investment rule.

That is, it reports
1o (1 peonltia) + (1= pow(t0)) & —
V(t,p,&*) :

where 2* is the alternative investment threshold in Lemma 6 and V' is the function in Lemma 5.
In terms of Figure 11, it is the distance between the two curves at the point where the dashed
curve joins the investment payoff, expressed as a percentage of the height of the solid curve. The
first row of the table shows results for the baseline parameter values. For at least the first 40
years, the welfare losses are small and largely insensitive to the probability that the bad climate
scenario holds. Even after 120 years, following the alternative investment rule results in welfare
losses of less than ten percent. This is consistent with the role of the bad news principle. For
larger values of ¢, the spread between A\y(t) and Ay(t) is greater, which (from Lemma 1) means
the noisy signal of rainfall intensity is more informative and the volatility of p is greater. This
increases the probability that incremental system upgrades will subsequently be stranded once
new climatic information becomes available, which makes delaying the investment decision more
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valuable. In other words, the value of the delay option is more sensitive to the arrival of new
climatic information when ¢ is larger, so making no allowance for that information leads to a
greater error when approximating the value of the delay option.

Each row in the first main panel of Table 3 shows results for a different level of volatility of the
economic factor.?6 The welfare performance of the alternative investment rule deteriorates as the
economic factor becomes more volatile. As greater economic volatility increases the likelihood
that the decision-maker receives “bad news” after investing, the reduced performance of the
alternative rule for large o is consistent with the bad news principle. The second main panel
of Table 3 paints a similar picture. Each row shows results for a different expected growth
rate in the economic factor. Faster expected growth decreases the probability that incremental
system upgrades will subsequently be stranded, which decreases the importance of delaying the
investment decision and improves the performance of the alternative investment rule.

The third panel examines the effect of the noise contained in the climatic signal. A larger value
of 6 implies more noise in the climatic signal, and therefore less volatility in the probability that
the bad scenario holds. This reduces the probability of post-investment stranding, and improves
the performance of the alternative investment rule. The effect is insignificant for small values of
t, because in this case the possible paths for rainfall intensity A(¢) are so similar that there is
almost no volatility in p. However, for large values of ¢, there is a noticeable improvement in the
alternative rule’s performance when the climatic signal is noisier.

The three panels show that changing individual parameters do not lead to significant welfare
losses from use of the alternative investment rule. As a final check, the bottom row of Table 3
sets each of the three key parameters equal to the value for which the welfare losses are greatest.
That is, the economic factor’s volatility is high, its expected growth rate is low, and the climate
signal has relatively little noise. The bottom row shows that in this case, the welfare losses
resulting from using the alternative rule are almost 20 percent at date 0; they can reach 30
percent by date 40. Thus, although the alternative investment rule performs reasonably well
over a wide range of parameter values, there will likely still be situations where it results in a
significant reduction in welfare. Thus, if the economic factor is volatile enough and grows slowly
enough, and if there is enough noise in the climatic signal, then there is still a place for “full”
real options analysis.

7.3 Policy implications

We have constructed an optimal investment policy for upgrading an asset to cope with climate
change, and also constructed a simpler alternative policy for deciding when to invest. Both of
these contributions have implications for how climate-change adaptation policy should be im-
plemented. The optimal policy shows that the value of delaying investment can be economically
significant and that the optimal delays can be long. In many situations, it can be optimal to de-
lay investment until the present value of the investment benefits exceeds the required investment
expenditure by 75%; in some cases, the premium is even larger. The wedge between the mini-
mum acceptable present value of the investment benefits and the investment expenditure equals
the value of the real option to delay investment. Standard cost—benefit analysis (which ignores
the value of the delay option and therefore leads to investment as soon as the present value of
a project’s benefits exceed its cost) will induce poor investment decisions. Unfortunately, opti-
mal decision-making requires estimating the value of the delay option, which requires a “deep
look into the future” (Bernanke, 1983). Fortunately, Section 7.2 suggests that there is a simple
alternative approach available to decision-makers that in many situations results in investment
timing that is close to optimal.

As it is described in Section 7.1, this method involves estimating the value of the delay option
by assuming that delayed investment will occur at the best fixed future date. This option value is

26Based on the evidence in Section 4.2, the range of values of p and o in Table 3 covers plausible values of the
two parameters.
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repeatedly updated, so that the eventual investment date will be determined by future climatic
and economic information. That is, the fixed-date assumption is used only for calculating the
present value of the delay option. There is a much simpler way to implement this approach,
which involves only a minor modification to the way that cost—benefit analysis is typically
carried out. Standard cost—benefit analysis involves estimating the present value of the benefits
of immediate investment and comparing them with the present value of the costs. If the former
is greater than the latter, then immediate investment is recommended. That is, the implicit
alternative to investing immediately is to not invest at all. The only change that is required to
implement the method introduced in Section 7.1 is to carry out this analysis for all possible
(fixed) investment dates. That is, also calculate the present value of benefits minus costs assuming
that investment is carried out n years from now, for n = 1,2, 3, . ... If the net present value from
investing immediately is greater than or equal to the largest of these delayed net present values,
then invest immediately, otherwise wait and reevaluate the project in the future (using all new
climatic and economic information that has arrived in the meantime). This process is repeated
at regular intervals until immediate investment is preferred to delaying until some fixed future
date.

The sensitivity analysis in Table 3 shows this approach will give near-optimal behaviour
in many situations. However, if the economic factor has high volatility and a small expected
growth rate, and the climate signal does not contain too much noise, then using the alternative
policy to make adaptation decisions could lead to reasonably significant welfare losses. Therefore,
when these conditions are met, analysts should either use “full” real options analysis or find an
approximation with better performance than the one considered here. The situations in which
this will be necessary are characterised by a relatively high probability of future “bad news”
resulting in the investment being stranded. In this context, “bad news” means that the scale of
climate change might not be as severe as was expected, or the value of the assets vulnerable to
flooding might be lower than was expected, at the time the investment occurred.

8 Conclusion

This paper analyses climate-change adaptation investment using a new theoretical framework
that incorporates climatic and economic volatility in a single model. The central feature of
this framework is the way that it models uncertainty about future climate change and how
this uncertainty will evolve over time. The paper derives an optimal investment policy for a
particular class of adaptation investments and finds that the value of the investment-timing
options embedded in projects of this type is economically significant. Finally, the paper shows
that most of the net benefits of investment can be captured if investment timing is decided using
a simple alternative to “full” real options analysis. If the decision-maker uses this alternative
rule, then she invests as soon as no fixed future investment date implies a greater net present
value than investing immediately.

Some components of the model in this paper are highly stylised, but with modifications the
framework could be suitable for practitioner use—at least until richer models of climate-change
uncertainty become available. For example, when the model is used to analyse investment in
flood risk management projects, the project benefits take the form of avoided flooding costs. In
this paper, these are calculated using a stylised macroscopic damage function, but in practical
applications this could be replaced by a damage function that is constructed using detailed hy-
drological analysis. The framework presented in this paper is sufficiently flexible to accommodate
such enhancements without greatly increasing the complexity of the required calculations.

There are two areas in which the model could be enhanced. The simplest extension would
be to apply the existing framework to problems involving alternative option structures. In this
paper, the capacity of the underlying project is a continuous variable and the decision-maker
decides how quickly to increase capacity. Many adaptation projects will have more complicated
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structures than this—such as the option to build in flexibility to make future investment more
efficient—and we cannot assume that the alternative rule will still be effective in such situations.
A more substantive extension would involve increasing the number of climate scenarios. Using
two scenarios, as in the current version of the model, probably gives an adequate model of
climate uncertainty over the short-to-medium term, but for very long-term projects it would be
better to allow a greater variety of potential outcomes.

A Proofs

A.1 Heuristic proof of Lemma 1

If p = Pr[A = X\p] is the decision-maker’s current subjective probability that the bad scenario
holds, then Bayes’ Theorem implies that her updated subjective probability is

p/ZPr[)\:/\b‘AZ} (R =) -Prid = Ny
A 7 (%)
_ F&EA=N)-p
O f(REN=N) pHF(REA= ) - (1—p)
where .
Az 1 [Ar =2t(a2
f(AtA>:e\/;€ )

is the density function of Az/At, conditional on A. The change in the probability that the bad
scenario holds therefore equals

Az _ _ Az _
Apzp’—p:p(l_p)<f FIREA =) = F (RN =) )

(FFA =) p+f(FEA=2) - (1-p)
Substituting in Az/At = X + 0/+/At implies that
2 ((7)vaee)” 2 () vaere)’

o7 ((572)vaee)
p(L—p)(X — Ag)e
() v

. <p<1 — P = Ag) (200 - (s + (1 — ) = (=21 - &) — Ag>)> A

Ap =p(1 - p)

et (VB ()

+ o(At)

as At — 0. Immediately before we observe z, we have E[¢?] = 1 and E[\] = pA\y + (1 — p))y, s0
that the expected value of the coefficient of At is zero. Therefore

Ap = p(l _p)é)\b — o) <\/th> + o(At),

which motivates the stochastic process for p in equation (2).

A.2 Proof of Lemma 2

Suppose the annual maximum one-day rainfall has density function f(R,t) at date t. If the
stormwater system has capacity ¢, then the date-t expected flooding cost equals z;C(q), where

Clo) = Eilmax{0.R—q}) = [ (R-@)f(R1) R
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This implies that
') = — / F(R.{)dR,
q

so that the avoided flooding cost for an incremental system upgrade equals

—2:C"(q) = x4 /OO f(R,t)dR = zPr;[R > q] = z:(1 — F(q,1)).

A.3 Proof of Lemma 3

Suppose the state of the system is currently (t,p, z;q). If the decision-maker increases capacity
to ¢ > ¢ and then waits dt units of time before reevaluating the investment programme, then
the present value of all relevant costs equals

clq' —q) + (PTp(¢,t) + (1 — p)Ty(q, )z dt + e " “E[W (t + dt, p + dp, = + dx; ¢')].
She chooses ¢’ to minimise this quantity, which we can rewrite as
Ult,p,z;q,4") =W (t,p,;q") + cld’ — q)
+ (DW(tpy5q) = 1W (6,9, 2:) + (BTo(ds 1) + (1= )Ty (q', ) dt + ofd)

as dt — 0. In the waiting region, this quantity is maximised by setting ¢’ = 0; that is, g—g, is

positive at ¢ = q and W (¢, p,x;q) = U(t,p, x;q,q). These conditions imply that
Wy(t,p,x;9) +¢ >0

and
DW(t,p,.fL‘, Q) - TW(t’pvx; q) + (prb(qvt) + (1 - p)rg(%t))x = 07

respectively. On the other hand, in the investment region it is optimal to increase capacity to
q* satisfying
Wq(t,p,z:¢") + ¢ =0,

so that
W(t,p,z;q) = U(t,p,7;q,4") = W(t,p,x;q¢") + c(q* — q).

As ¢* is independent of ¢, this implies that

Wy(t,p,x5q) = —c.
In addition, W (t,p,z;q) < U(t,p,x;q,q), which implies that
Thus, W satisfies the variational inequalities in Lemma 3.
A.4 Proof of Lemma 4
From Lemma 3, inside the waiting region,

Wy(t,p,x;q9) +¢>0

and
DW (t,p,x;q) — W (t,p,x;q) + (pLy(q, t) + (1 — p)Ty(g, t))xz = 0.
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Differentiating the differential equation with respect to capacity ¢ shows that, inside the waiting
region, W, satisfies

Ty (q, AT, (q,t
DWy(t,p, 5q) — rWy(t,p,;q) + <pb(q’) +(1 —p)g(q)> T =0.

dq dq

Now consider the situation inside the investing region. If the decision-maker does not invest,
then the present value of all relevant costs will equal

(PTo(q,t) + (1 — p)Ty(q, )z dt + e "“E[W (t + dt,p + dp, = + dz; q)].

In contrast, if she increases capacity to some level ¢’ (which need not be the optimal level), then
the present value of all relevant costs will equal

c(qd" —q) + (pTp(q',t) + (1 — p)Fg(q/, t))xdt+e " th[W(t +dt,p +dp,x + dv; q))].

As some investment is optimal, the second present value will be less than the first one provided
q' — q is sufficiently small. That is,

c(d = q)+ PLu(d',t) + (1 — p)Ty(q t))z dt + e " "E[W (t + dt,p + dp, x + da; q')]
< (pLo(g,t) + (1 — p)Ty(q, t))x dt + e " “E[W (t + dt,p + dp, x + dz; q)),
which implies that
(g, t)—T t T, (¢d.t)—T t
0>C+<p< b(Qa)/ b(qa )>+(1_p)<g(q’)/ g(q, )>>£Cdt
qg —4q qg —4q
Lerdip [W(t+dt,p+dp,:1:+dx;q’) —W(t+dt,p+dp,x+d:c;q)}

¢ —q
Taking the limit as ¢’ — ¢ shows that
0> c+ (pLyg(q,t) + (1 —p)Ty4(q,t)) xdt + e "M E [Wy(t + dt,p + dp, = + dz; q)]
which in turn implies that
0> c+ Wy(t,p,x;q) + ((pfbﬂ(q,t) + (1 —p)Tyq(q,t)) x +DW,(t,p,z;q) — rWy(t, p, z; q)) dt.
The sum of the first two terms on the right-hand side equals zero, which implies that
Py q(q,t) + (1 = p)Lgq(q, 1)) x — rWe(t, p, x5 q) + DWy(t,p,a59) <0

in the investing region. This completes the proof that W, satisfies the variational inequalities in
Lemma 4.

A.5 Proof of Lemma 5

The first result in Lemma 4 shows that

V(t,p,z;9) = (poo(t; @) + (1 = p)vg(t;q)) @ + Wolt, p,x;9) > (pus(t; @) + (1 = plug(t;q)) & — c.

The second result shows that

DV (t,p,x;q) —rV(t,p,x;q) = DWy(t,p,x;q) — rW, (t p,fc q)
+D ((pvb(t' q) + ( 0(t;q ) x)
—r (pup(t; q) + (1 - )vg(t q)) x
< —(pr,q(q, ) (1_ ) gq(% ))37
+D ((pvu(t; @) + (t;q)) )
— 7 (pup(t; q) + (1 - )Ug(t q)x
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where the final step uses the result that
Dui(t; q) = Ligla,t) + (r — pui(t; q)

fori=1b,g.

A.6 Proof of Lemma 6
Note that

Z'(s) = re"c+e U (puop(t+ siq) + (1 — pvl(t+ siq)) 2
— (r — e TS (pay(t + 539) + (1 — pe)vg(t + 39)) 24

The definitions of vy(t; ¢) and v,(t; ¢) imply that

vyt q) = (r — pvp(t; q) + Fy(q,t) — 1
and

vy (t;q) = (r — w)vg(t; q) + Fylg,t) — 1.
It follows that

e 7'(5) = re — e (1 puFy(a,t +5) — (1 — p) Fylg,t +5)) .

As Fy(R,t) and F,(R,t) are decreasing functions of ¢, it follows that ¢"*Z’(s) is a decreasing
function of s (provided that p > 0). Therefore, if Z’(0) < 0 then Z’(s) < 0 for all s > 0, which
implies that

Sl>118 Z(s) = Z(0) = (prop(t; q) + (1 — pe)vg(t; q)) z — c.

In this case, the decision-maker will invest immediately. In contrast, if Z’(0) > 0, then the
first-order condition Z’(s) = 0 has a unique positive solution, yielding the best fixed future
investment date, s* > 0. This implies that

sup Z(s) = Z(s*) > Z(0) = (pros(t; ) + (1 — pr)vg(t; q)) 20 — ¢,

in which case the decision-maker will delay investment.
These results demonstrate that the decision-maker will invest immediately if and only if
Z'(0) < 0, which holds if and only if

(1 —peFy(q,t) — (1 — pi)Fy(q, t)) Ti > re.

This policy can be written in terms of a threshold for z:

peFy(q,t) — (1 — ) Fy(q,t)

€Ty >
tfl_

B Numerical methods

The model is formulated in (¢, p, z)-space, but we change coordinates to (t,y,z) when we solve
it numerically, where y = log(p/(1 — p)) and z = log x. That is, we replace the probability that
the bad scenario holds with the corresponding log-odds ratio, and the economic factor with its
natural logarithm. In the waiting region, the value of the incremental upgrade option satisfies
the partial differential equation

0= Vt% <M>2 V;,y+%a2vzz+1 <)‘b(t) — )‘g(t)>2 <€y — 1) V;+<u - 02) V,—rV.

0 2 0 e¥y+1 2
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Unlike the partial differential equation in the original coordinates, in these coordinates the
coefficients of the second-order derivatives, V,, and V.., are functions of ¢ only.

We solve the investment-timing problem on a discrete grid. This involves converting the
variational inequalities in Lemma 5 into a linear complementarity problem, which we solve
using a variant of the operator-splitting approach developed by Ikonen and Toivanen (2004,
2009). The transformed coordinate system clusters grid points near the p=0,p =1, and x =0
boundaries, but cannot actually place grid points on these boundaries. Therefore, we set up the
grid so the endpoints in the y direction are close to the p = 0 and p = 1 boundaries, and the
lower z grid point is close to the x = 0 boundary.

We solve the model out to some arbitrary large date T', which we set equal to 500 years, and
assume that nothing changes past this point. In particular, we assume the investment payoff
equals

(pos(T;q) + (1 — p)vg(Ts5q)) & — ¢

on or after date T'. The effects of this assumption are negligible, given that rainfall intensity
has almost completed the convergence process by this date. Moreover, the effects of any ap-
proximation errors will be trivial by the time everything is discounted back to date 0. We solve
this problem using the projected successive over-relaxation approach, set V(7T',y, z) equal to the
present value of the perpetual option, and then use this as the terminal condition before iterating
back to date 0 in the usual way.?”

We calculate the optimal investment threshold as follows. For each (¢;,vy;), calculate the
largest grid point z; inside the waiting region. Let g; equal the stopping payoff at (¢;, v, 2;)
minus the waiting payoff at the same grid point. As the grid point is in the waiting region, this
number will be negative. Let g;11 denote the corresponding quantity at the adjacent grid point
(tiy i, zi+1). As this is inside the stopping region, g;+1 will be positive. Note that in order to
calculate g;4+1, we need to calculate the waiting payoff. This will be readily available from the
intermediate calculations used in the finite difference method. Assuming the difference between
the stopping and waiting payoffs is linear in z between grid points, the payoffs are equal at

2F =z + (—gz> Az,
gi+1 — gi

where Az is the distance between grid points in the z direction. The corresponding threshold

for the economic factor is
Ak _gl
T*(ti,y;) = exp (zi + <) Az) .
9i+1 — i
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