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Summary 

As the impacts of climate change are being felt more widely, questions are being asked 
about how large further impacts will be on rural communities. Future climate change is 
expected to primarily affect farm productivity with subsequent effects on rural 
employment, local spending, and other economic and social outcomes.  

The aim of this report is to address a ‘quantification gap’ in the Aotearoa New Zealand 
(Aotearoa) literature on the implications of climate change for rural communities. While it 
is well-accepted that climate change will have some impact on rural communities, it is 
unclear how large such impacts might be.  

This report provides one of the first studies to quantify the impacts of climate change on 
economic outcomes in Aotearoa, based on the estimation of historical statistical 
relationships (Hsiang 2016; Hsiang et al. 2017). The report is divided into two parts: the 
first examines the impact of drought and climate change on pastoral-farm profits, and the 
second examines the impact of drought on agricultural employment.  

We combine unique data on individual businesses with daily weather data at a fine spatial 
scale to estimate the historical impact of drought on, respectively, farm profits and 
agricultural employment. To do this, we use modern econometric techniques that use the 
full daily distribution of both soil moisture and temperature to identify both the effects of 
weather changes in normal times and the effects of extreme conditions, such as drought. 
We also account for delays between the timing of the weather events and when the 
effects appear in our outcomes.  

The first part of our analysis focuses on the impacts on two primary industries – dairy and 
sheep and beef. The analysis of employment effects, however, encompasses all agricultural 
sectors. While changes in rural employment are, in principle, affected by changes in 
profits, there are also other pathways that may link weather changes to employment. Thus, 
we perform our analyses independently to allow for all possible mechanisms by which 
weather may impact employment.  

Our results clearly show the link between soil moisture and farm profits, with low soil 
moisture showing immediate effects on dairy farm profits but lagged effects on 
sheep/beef farm profits. Each very dry day causes, on average, dairy and sheep/beef farms 
to experience a loss in annual profits of around one average day. These losses occur in the 
same year for dairy farms but are spread out over 2 years for sheep/beef farms.  

Our analysis also finds suggestive evidence of substantial effects of temperature on 
sheep/beef farms for two years following both high and low temperature events. This 
temperature effect is large but quite uncertain.  

Translating these results into climate change projections suggests modest negative effects 
on profits for the remainder of the century due to soil moisture change for both dairy and 
sheep/beef farms (subject to moderate uncertainty) and potentially substantial negative 
effects of changes in temperature for sheep/beef farms (subject to large uncertainty). 
Importantly, these projections account for productivity losses only and do not account for 
any potential offsetting effects on profit due to future commodity price increases.  
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Our analysis also examines the implications of historical drought for agricultural 
employment at the local level. For this analysis, we go beyond sheep/beef and dairy and 
examine the effects for several other agricultural industries: nursery/floriculture, 
mushroom/vegetables, fruit and tree nuts, poultry, forestry, deer, other livestock, other 
crops, forestry support, and agricultural support as well as all agricultural industries 
aggregated. The results indicate that soil moisture and temperature have different and 
sometimes offsetting effects across industries. When we combine all industries, the results 
are quite inconsistent, with some results indicating positive effects of soil moisture and 
some indicating small or even negative effects. These results may reflect inconsistency in 
the results across the underlying industries with drought having a negative effect in some 
industries and neutral or positive effects in other industries.  

For some industries, we find that dry soil is associated with an increase in employment 
whereas in others dry soil is associated with an employment decrease. Dairy has some 
consistent results, with the relationship between monthly soil moisture and monthly 
employment indicating that drought would reduce employment. However, when we look 
at annual employment even in the dairy industry, we find the impact of soil moisture 
depends on the month. In addition to looking at industries in the primary agricultural 
sector, we also conduct similar analyses for food manufacturing which show similar results 
to the industries in the primary agricultural sectors. Further investigation is needed to 
explore what is driving this inconsistency in employment responses to drought. 

Overall, our results clearly indicate that increasing frequency and severity of drought will 
have a modest negative impact on the profits of dairy and sheep/beef farms. Further 
investigation is required to clearly determine the extent to which these effects on profits 
may translate into broader effects on other economic outcomes, such as employment. 
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1 The impact of drought on pastoral-farm profits 

1.1 Introduction 

Aotearoa New Zealand enjoys some of the most productive and highest-value farmland 
globally (Savills Research 2020), and a hospitable climate contributes substantially to these 
qualities. As climate change continues, however, we are faced with the question of how 
much this change will affect the productivity of farmland in Aotearoa. This question is 
important because farm productivity is the basic underpinning of many rural communities’ 
economic well-being and a key contributor to the revenue of many Māori authorities, as 
well as to national exports, and to the national tax base. Knowing the potential scale of 
these productivity changes allows both government and industry to make informed 
decisions about adapting to climate change, because it allows them to trade off the 
benefits of adaptation actions with the costs of these actions.  

A key concern is that future droughts will become more frequent, widespread, and intense 
than the droughts we have experienced in recent memory (Mullan et al. 2018). These 
droughts cause harm to production, farm profits, farmer well-being, and community well-
being. As the severity of drought increases over time, the risk of greater harm to these 
important farm and community outcomes also increases. However, there is little 
information about how large these impacts might be.  

In this chapter, we explore the extent to which expected changes in drought and other 
weather may affect the profitability of pastoral farms in the future and, in turn, gain an 
indication of the extent to which climate change may threaten the resilience of rural 
communities. To do this, we use Aotearoa New Zealand’s world-leading business 
microdata database, the Longitudinal Business Database (LBD), which collects detailed 
firm-level information on farming activities and financial performance from 2000 to the 
present. We combine these business data with data on both historical weather and climate 
change.  

Using the LBD, we measure operating profit per hectare for every farm in the country and 
for every year data are available. We then construct a flexible representation of drought 
and other weather using measures of the full distribution of daily soil moisture and 
temperature throughout each of the 3 years before the farm reports these profits. We then 
use fixed-effects regression modelling to find the historical relationship between 
operating profit and these weather variables. This approach using the daily distribution 
allows us to estimate the effect of extreme conditions on profits.  

Our primary specifications find that low soil moisture on both dairy and sheep/beef farms 
is associated with lower profits in the same year. These effects also flow on to the 
following year for sheep/beef farms. A day with very low soil moisture is associated with a 
reduction in annual operating profits of dairy farms of approximately NZ$4.59 per ha per 
day, or around 104% of daily-average profits. A day with severely dry soils on sheep/beef 
farms is associated with a reduction in operating profits of approximately NZ$1.32 per ha 
per day over 2 years, or around 103% of daily-average profits. We do not see an obvious 
direct impact of temperature (i.e. separate from the impact via soil moisture) on dairy 
profits, but do see suggestive evidence of positive impacts of moderate temperatures (up 
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to 20°C) on sheep/beef profits and larger negative impacts of warm temperatures (above 
20°C) on sheep/beef profits. The estimated impact of temperature on sheep/beef profits is 
highly statistically uncertain, however.  

At the national level, the estimated soil moisture impacts translate into modest adverse 
effects of climate change on the expected profitability of farms. To project future climate 
impacts, we use data on expected climate change from dynamical downscaling of six 
general circulation models (Sood & Mullan 2020). We project that if the historical effect of 
soil moisture on profits holds, we would expect an average drop in annual earnings of $65 
per ha (20% vs 2016–2018) in 2100 for dairy farms and $15 per ha (7% vs 2016–2018) in 
2100 for sheep/beef farms via productivity changes. The central projected effects of 
climate change on sheep/beef farms incorporating temperature impacts are much larger, 
with a projected annual loss of $115 per ha (54% vs 2016–2018) in 2100 via productivity 
changes but noting that this final projection has a high level of uncertainty (95% 
Confidence Interval: -1–108%).  

This chapter makes two contributions to the literature on the consequences of climate 
change, each with the qualification that there may be other studies we are not aware of. 
We believe it is the first study to apply climate econometric techniques to study the non-
linear effect of weather on the production or profitability of pastoral farms using 
nationwide data.1 Pastoral farming in some form accounts for around one-third of global 
land area and contributes around 7–10% of global caloric production (Bell et al. 2020); 
thus, tracking how these assets are likely to respond to changing temperatures and water 
availability is key to understanding the problem of climate change. New Zealand is an 
appropriate setting to study the effects of climate change on pasture, given that it is the 
predominant agricultural land use, and that it is a key contributor to the dairy (largest), 
sheep (top two), and beef (top ten) export markets.  

This chapter is also the first statistical study to simulate the effect of climate change using 
a water availability measurement rather than simply via temperature or precipitation.2 
Modelled measures of water availability can outperform simple aggregations of 
precipitation as predictors of agricultural outcomes because they use knowledge of the 
physical water balance to better measure how much water is available for plants to use on 
a given day. A key barrier to using water availability measures outside of Aotearoa is that 
many providers of weather and climate data do not routinely compute measures of water 
availability and make them available to researchers. 

 

1 Tait et al. (2005) study the linear impact of seasonal soil moisture on regional milk production in New 
Zealand. Bell et al. (2020) study the effect of weather on grass production on a single farm. 
2 An exception is Bell (2017), by the lead author of this report. Compared to Bell (2017), the results in this 
chapter use superior data and are robust to national/regional price effects. Readers should consider the results 
of this report to supersede those in Bell (2017). Anderson et al. (2015) found that a water availability measure 
performs well in explaining variation in empirical maize yields in the USA but does not simulate the effects of 
climate change. 



 

- 3 - 

1.2 Further background literature 

There are several other macro- and micro-economic studies that estimate the empirical 
relationship between weather and agricultural/economic outcomes. A study comparing 
the severity of the 2012/13 drought in New Zealand against previous droughts showed 
that it was one of the most extreme on record, and that while it was widespread across the 
country, some regions were more affected than others (Porteous & Mullan 2013). Kamber 
et al. (2013) looked at the impact of drought using an empirical macroeconomic model to 
predict the likely effects of the 2013 drought on the broader economy. Their results 
showed that the 2013 drought was likely to have lowered annual GDP. These authors built 
on previous research from Treasury, which incorporated weather shocks (including 
drought events) in their models (Buckle et al. 2002). An OECD (2016) study also estimated 
that the 2013 droughts reduced annual GDP, based on information from the Ministry for 
Primary Industries (MPI). MPI incorporates drought events into their annual Situation and 
Outlook for Primary Industries when predicting production for the year (MPI 2018). Yet 
both the work by Treasury and by MPI focus on macroeconomic factors as opposed to 
more localised outcome measures.  

Two microeconomic studies examine the impact of weather on productivity: Timar and 
Apatov (2020) and Pourzand et al. (2020) both aim to estimate the impact of linear 
representations of drought in New Zealand on farm profits, but neither simulate climate 
change impacts.3 

As for agricultural production outcomes under climate change, Baisden (2006) empirically 
estimated the linear relationship between MODIS-derived annual net primary productivity 
of pasture (a key input on many New Zealand farms), annual temperature (above 5°C), and 
soil moisture deficit. Tait et al. (2008) simulate these relationships under climate change 
and find minor impacts on production. Zhang et al. (2017) estimate the impacts of 
quadratics in temperature and rainfall on pasture production across the North Island and 
show that small climate changes could have substantial impacts. Keller et al. (2014), using 
an ecosystem process model (Biome-BGC) and land-use model (LURNZ), show a relatively 
small increase in national pasture production in 2050 under climate change scenarios. 
Their results do, however, show significant regional variation. Projections for 2100 show 
pasture production for dairy systems increasing or slightly decreasing while pasture 
production in sheep and beef systems declines.  

Tait et al. (2005) simulate general equilibrium impacts of various drought scenarios using 
empirically estimated linear relationships (by season of year) between milk production and 
various weather variables. 

 

3 Apatov et al. (2015) include weather as a predictor of agricultural productivity but provide no discussion of 
their estimated effects beyond the direction of the effect. 
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1.3 Data sources and preparation 

This section describes how we compiled data on farm performance as well as weather. The 
time period for this analysis is 2002–2018, and all dairy and sheep/beef farm-years are 
eligible to be included in the sample prior to filtering for data quality and completeness. 
We provide detailed steps on cleaning and filtering observations in the appendix and 
present basic summary statistics in Table 1. 

Table 1. Summary statistics 

 Dairy 

Variable Mean SD 1st percentile 99th percentile 

Operating profit per ha ($/ha) 1,909 1,508 –1,705 6,304 

Total operating profit ($) 293,365 242,016 –252,782 1,033,609 

Effective farming area (ha) 174 103 47 503 

Taxable profit per ha ($/ha) 580 1,256 –2,606 3,981 

Revenue per ha ($/ha) 5,131 3,042 432 15,023 

Operating expenses per ha ($/ha) 3,224 2,195 422 10,702 

Average daily soil moisture (-mm deficit) –36.9 17.5 –79.5 11.0 

Average daily temperature (°C) 13.3 1.6 8.9 16.1 

 Sheep/beef 

Variable Mean SD 1st percentile 99th percentile 

Operating profit per ha ($/ha) 430 399 –447 1,739 

Total operating profit ($) 126,102 118,449 –92,864 496,737 

Effective farming area (ha) 332 229 50 1,020 

Taxable profit per ha ($/ha) 175 427 –825 1,367 

Revenue per ha ($/ha) 1,457 964 290 5,193 

Operating expenses per ha ($/ha) 1,026 788 160 4 ,172 

Average daily soil moisture (-mm deficit) –43.9 18.1 –94.4 -9.8 

Average daily temperature (°C) 12.1 2.0 8.0 16.1 

All summary statistics are calculated at the observation level. The samples include 29,340 observations from 

4,338 dairy farms and 40,086 observations from 5,598 sheep/beef farms. 
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1.3.1 Farm performance 

To measure farm performance, we use data from Statistics New Zealand’s world-leading 
Longitudinal Business Database (LBD), a restricted database which compiles data on both 
the financial performance of farms and farm characteristics. First, we identify dairy and 
sheep/beef farming enterprises using the Agricultural Production Survey/Census (APS/C), 
which provides industry and farming area by land use.4 The APS/C aims to collect data on 
all but very minor farming operations in Aotearoa. Censuses were conducted in 2002, 
2007, 2012, and 2017, with other years aiming to survey approximately one out of every 
three farming enterprises.  

The IR10 is a financial statement return required of all enterprises in Aotearoa every year. 
This return collects basic information, usually recorded in annual financial statements, such 
as balance sheet and profit/loss items. We extract operating profit from the IR10, which we 
define as total sales less total operating expenses. We define total operating expenses as 
the sum of cost of goods sold, repairs and maintenance, wages and other remuneration, 
subcontractor payments, and ‘other expenses’ (a category for expenses not otherwise 
categorised). Bad debts, depreciation, insurance, interest paid, professional fees, rates, rent 
paid, and research/development are excluded from operating expenses as expenses in 
these categories typically do not directly contribute to current production. All values are 
inflated to 2018 dollars. While enterprises can nominate any date as their balance date 
(the final date of their accounting year), the vast majority of pastoral farming enterprises 
use 31 March, 31 May, or 30 June. To simplify the process of matching weather data to 
farm performance data, we restrict the sample to businesses with balance dates in March, 
May, or June.  

To measure farm performance, we then calculate operating profit and divide by effective 
farming area for each year that is observed in both the APS/C and IR10 data sets. We 
define effective farming area as the sum of land in pasture and crops. 

1.3.2 Farm enterprise location 

We observe farm location in the Longitudinal Business Frame (LBF) data set, which 
provides various metadata associated with business operations. The LBF also provides a 
second source in which we can observe industry.  

Farms report the IR10 return at the enterprise level, meaning at the level of the legal firm 
entity (company, partnership, etc.) with common ownership. However, enterprises can 
have multiple operating businesses at different geographical locations in the LBF. 
Fortunately, the vast majority of farm enterprises have a single operating location with a 
single set of metadata.  

 

4 We construct our measure of farming area (‘effective hectares’) as the sum of pasture and arable cropping 
area. 
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For firms with multiple locations, we first remove businesses that are a member of a group 
of enterprises, have a parent enterprise, or are a parent enterprise. Even if there is a single 
farming business within one of these arrangements, we are unable to determine in which 
enterprise revenues and expenditures are recorded. For the few remaining enterprises that 
have more than one operating location, we average our weather variables using equal 
weights; there are very few cases where the multiple locations are substantially distant. 

1.3.3 Weather 

To measure weather for each farm location, we use the Virtual Climate Station Network 
(VCSN) provided by the National Institute for Water and Atmospheric Research (NIWA) 
(Tait et al. 2006). This data set provides a spatially-interpolated grid of daily weather for 
the full period of our sample. We use daily soil moisture5, minimum temperature, and 
maximum temperature. The temperature variables are directly measured at weather 
stations, whereas NIWA calculate the soil moisture variable using the history of 
temperature, rainfall, and other variables (Porteous et al. 1994; Tait & Woods 2007). 6 We 
spatially aggregate the daily weather data up to the meshblock level using spatial-overlap-
area weights.7 

Because poor weather can potentially affect farm performance for several years, we 
include weather for the 36 months prior to the IR10 filing in our analysis, with the 
exception of returns filed in June, for which we include weather for the 36 months prior to 
31 May. We perform this adjustment for June filers because it is unlikely that weather 
variation in June will cause changes in farm financial performance until at least the 
following year. 

1.3.4 Climate change 

We obtain projections of both soil moisture and temperature from NIWA. These 
projections modify the output of six general circulation models (GCMs) from the fifth 
Climate Model Intercomparison Project (CMIP5) using a regional climate model to provide 
higher-resolution output (Sood & Mullan 2020) than the underlying GCMs: BCC-CSM1.1, 
CESM1-CAM5, GFDL-CM3, GISS-E2-R, HadGEM2-ES, and NorESM1-M. From these data, 
we use daily projections of soil moisture, minimum temperature, and maximum 
temperature from 2000 to 2100 for each of the six underlying GCMs, and for each of the 
climate change scenarios RCP4.5 (representing moderate climate change) and RCP8.5 
(representing high climate change). We process these daily projection data using 
polynomial transformations in the same way as for our historical weather data. 

 

5 We use NIWA’s measure of soil moisture provided in the VCSN, which is the negative of their soil moisture 
deficit variable. Soil moisture deficit describes the quantity of water required (in mm) to saturate the soil. The 
data range from –150 mm, the negative of their assumed maximum capacity (representing a very dry state), to 
positive values, which represent a state where water would run off. 
6 Note that the soil moisture variable can reset itself during extreme dry and extreme wet periods such that it 
no longer directly depends on values from times preceding the reset. 
7 There are typically very few grid cells (and often one) that overlap a single meshblock. 
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1.4 Methods 

This section describes our methods. We separate out the descriptions into our historical 
statistical analysis and our forward projection analysis. 

1.4.1 Relationship between profits and weather 

The statistical results in this report use panel-fixed-effects regressions to find the non-
linear relationship between pastoral-farm operating profits and daily soil 
moisture/temperature.8 The primary goal of this approach is to compare how changes in 
weather from year to year predict changes in profits from year to year on average across 
the country for both the dairy and the sheep/beef industries.  

To control for differences in profits across space that may be due to other factors but are 
correlated with climate, such as topography, we include fixed effects for enterprise. These 
unit-fixed effects control for all unobservable factors that are fixed across time for a given 
enterprise, allowing us to better isolate the impact of changes in weather on profits from 
differences in profits caused by other factors that vary across space.  

To control for national and regional input- and output-price effects, we also use time-fixed 
effects for each region and time period. These time controls are important for two reasons: 
first, it is well known that variation in the output prices of agricultural commodities is a 
major driver of variation in farm profits. If output prices are correlated with local 
productivity, failing to control for output prices would bias our estimates of the 
productivity effect of weather on profits. This correlation can occur (a) if Aotearoa is a 
major producer in the international market due to shifting international supply (as in the 
case of dairy/sheep products); (b) due to the El Niño–Southern Oscillation (ENSO) effect 
simultaneously causing disruptions to global agricultural markets and causing local 
productivity changes; and (c) due to global changes in input prices.  

Note that changes in both input and output prices due to climate change will be an 
important determinant of how profitable farming will be in the coming decades. A full 
accounting of the projected impact of climate change on the profitability of local 
agriculture requires both expected price changes as well as changes due to productivity 
effects. Forming expectations about how agricultural input and output prices might 
change due to climate change is complex and outside the scope of this report. Further 
note that our analysis includes three overlapping time periods per year, as we include data 
on firms with balance dates in March, May, and June.  

These fixed effects imply that our analysis uses changes in weather across time for farms 
compared to how those changes occur at the regional level to predict changes in farm 
profits. The remaining variation in weather, after removing farm-fixed effects as well as 
regional time-fixed effects, is spatial differences within a region in how weather is 

 

8 See Hsiang (2016) for an extended description of these methods. See Deryugina & Hsiang (2017) for a 
theoretical argument supporting the use of this weather-based approach for the valuation of climate change. 
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changing from year to year. Given that these differential changes in weather occur more or 
less randomly across time and space, this approach provides a natural experiment that 
allows us to interpret the statistical relationships we recover in the data as the causal effect 
of changes in the weather on farm profitability (Angrist & Pischke 2009; Hsiang 2016).  

Next, there are potentially complicated dynamics that mediate the relationship between 
weather and profits over time (Fisher et al. 2012; Deschênes & Greenstone 2012). For the 
context of this chapter, these dynamics can include the storage of grass and other feed, 
changes in the timing of selling stock, as well as delayed effects because stock sold today 
and milk/wool produced today come from animals exposed to a history of (potentially) 
several years of weather. We investigate such dynamics by estimating a distributed lag 
model with lagged weather of up to 2 years before the year in which profits accrue.  

To summarise, the goal of the statistical analysis is to estimate the relationship between 
operating profit and daily weather, allowing for non-linearity and lags in the response of 
profit to weather. The estimating equation for our main results is thus of the form: 

 
𝑦௧ = 𝛼 + 𝛾௧,() +ቀ𝛽 𝑆𝑀෦ ,௧ି௬௦()


+ 𝛿 𝑇,௧ି௬௦()


ቁ



ୀଵ

ଶ

ୀ

+ 𝜀௧ (1.1) 

where 𝑦௧ is operating profit per hectare for farm 𝑖 during the year ended on date 𝑡 (years 
ending at 31 March, 31 May, and June 30 from 2002 to 2018); 𝛼 is a farm-fixed effect; 
𝛾௧,() is a time-fixed effect specific to each time period 𝑡 and region 𝑟(𝑖); 𝑡 − 𝑦𝑒𝑎𝑟𝑠(𝑙) lags 
date 𝑡 by 𝑙 years; 𝑘 indexes polynomial degrees; and 𝛽 and 𝛿 are the coefficients on soil 
moisture and temperature (respectively) for lag time 𝑙 and polynomial degree 𝑘. 𝜀௧ is the 
error of the model, which we assume has cluster correlations within years and enterprises. 

Following Schlenker and Roberts (2009) and Hsiang (2016), we construct the weather 
variables 𝑆𝑀෦ ,௧ି௬ ()

  and 𝑇,௧ି௬௦()
  to estimate the non-linear impact of changes 

across the full daily distribution of these variables, including extremes. We calculate 
𝑆𝑀෦ ,௧ି௬ ()

  as: 

 𝑆𝑀෦ ,௧ି௬௦()


=  𝑆

ఛ∈ୈୟ୷ୱషೌೝೞ()

𝑀ఛ
  (1.2) 

where 𝜏 indexes days, Days௧ି௬ () is the set of days in the year ended 𝑡 − 𝑦𝑒𝑎𝑟𝑠(𝑙), and 
the superscript 𝑘 now represents exponentiation. The method allows us to estimate the 
effect of extremes in the daily temperature distribution because we compute these 
polynomial transformations using the daily data before aggregating to the annual level. 
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For 𝑇, we assume temperature follows a sine curve that passes through the minimum and 
maximum temperature on each day (the ‘single-sine’ method), and compute the 
regressors by integrating the polynomial transformations of the sine-interpolated 
temperature for each day before summing to the annual level9: 

 
𝑇,௧ି௬௦()


=  න ቆ
𝑇ఛ
௫ − 𝑇ఛ



2
sin(2𝜋(𝑥 − 𝑠)) +

𝑇ఛ
௫ + 𝑇ఛ



2
ቇ

ଵ

ఛ∈ୈୟ୷ୱషೌೝೞ()

𝑑𝑥 (1.3) 

where 𝑇ఛ௫ is the maximum temperature observed on day 𝜏 on farm 𝑖, 𝑇ఛ is the 
corresponding minimum temperature, 𝑥 is the variable of integration representing time-
of-day, and 𝑠 is a parameter that shifts the timing of the temperature minimum/maximum 
(𝑠 does not enter the solution of the integral). The results in this report will use 
polynomials 𝑘 up to degree 4. 

1.4.2 Projections of profits under climate change 

The weather projection data are provided by NIWA. In this report we use daily projections 
of soil moisture, minimum temperature, and maximum temperature derived from six 
dynamically downscaled GCMs (Sood & Mullan 2020). The first step in the procedure to 
project climate-induced changes in profits forward is to construct annual weather 
variables using the formulae in equations (1.2) and (1.3) and applied to a single scenario 
and GCM. We denote this projected weather variable as 𝑋௧௦

 , where 𝑖 here indexes 
locations, 𝑡 indexes years in the projection data, 𝑠 indexes scenarios RCP8.5 and RCP4.5, 𝑔 
indexes the six GCMs, and 𝑋 ∈ {𝑆𝑀, 𝑇}. Next, we compute the following quantity: 

 
𝑦௧௦ =ቀ𝛽ෝ


𝑆𝑀෦ ௧௦


+ 𝛿ෝ 𝑇௧௦


ቁ



ୀଵ

ଶ

ୀ

 (1.4) 

where 𝛽ෝ


 and 𝛿ෝ are the estimated values from equation (1.1). We then aggregate to the 
national level using area weights:10 

 
𝑦௧௦ =

∑ 𝑦௧௦
ே
ୀଵ ∗ Area

∑ Area
ே
ୀଵ

 (1.5) 

  

 

9 The code for calculating these integrals is available at https://github.com/kendonB/degreedays. 
10 The area weights are the sum of area across all observations in the data set at location 𝑖. 
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Finally, we convert the quantities into changes over time by taking the full national time 
series for each scenario 𝑠 and GCM 𝑔 and subtracting the lowess-smoothed value for 2018 
(smoothing through time): 

 Δ𝑦௧௦ = 𝑦௧௦ − 𝑦ଶଵ଼,௦ (1.6) 

Δ𝑦௧௦ thus represents the change in projected profits from 2018 to year 𝑡 for location 𝑖, 
scenario 𝑠 and GCM 𝑔. 

We then present lowess-smoothed versions of the resultant time series to indicate how 
expected profits might move due to the productivity impacts of climate change. In these 
smoothed results, we also present uncertainty associated with both the statistical 
estimation based on the estimated variance-covariance matrix, as well as a simple 
characterisation of model uncertainty by including results for all six GCMs in the 
distributions (Burke et al. 2014). 

We create these lowess-smoothed time series using the following procedure. We first 
make 1,000 draws from the estimated joint distribution of the 𝛽ෝ


 and 𝛿ෝ coefficients. We 

then compute time series using equations (1.4), (1.5), and (1.6) using each of these 1,000 
draws. Next, we lowess-smooth the calculated time series over time. Finally, we compute 
the 5th, 25th, 50th, 75th, and 95th percentiles for each time period and scenario, pooling 
the results for the six GCMs. 

While these smoothed results can help us understand how normal years’ performance 
might be expected to change, we are also interested in knowing how performance might 
change during particularly bad drought years. To examine how performance might change 
in these bad years, for each of the six GCMs we plot the central predictions of Δ𝑦௧௦ for 
each year 𝑡 and GCM 𝑔 for RCP8.5. 

1.5 Results 

This section first describes the regression results that estimate the historical relationship 
between weather and farm profits. Next, it describes the results projecting those 
relationships into the future using climate model output. 

1.5.1 Regression results 

Figure 1 displays our main results that show the historical relationship between daily soil 
moisture and operating profit per hectare. The two figure panels each plot daily soil 
moisture on the x-axis and the change in operating profit per hectare compared with 
20 mm soil moisture deficit on the y-axis. 
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Figure 1. Estimated effects of changes in daily soil moisture on farm profit for dairy (left) and 
sheep/beef (right) farms.  
Notes: 
Soil moisture units are plotted as negative soil moisture deficit. Plotted values show the predicted 
change in profit that would result from changing 1 day from 20 mm soil moisture deficit to other 
values (ranging from 140 mm soil moisture deficit to 20 mm excess soil moisture). Red lines (dairy 
and top in sheep/beef) show the effect of soil moisture changes in the same year as that in which 
the profits accrue. The light-blue line (middle in sheep/beef) shows the corresponding effect on 
profit for the first year following the soil moisture changes. The dark blue line (bottom in 
sheep/beef) shows the additive effect on profit over both years. The y-axis of the sheep/beef plot is 
chosen such that the ratio of the ranges between industries is equal to the ratio of mean daily 
operating profit 2016–2018 between industries. Annotations showing operating profit are vertically 
centred at the negative of the displayed values. Shaded areas are 95% confidence bands calculated 
robust to error clustering by year and farm. Sheep/beef confidence band represents uncertainty 
associated with the combined effect. Underlying regressions include enterprise and region-by-
time-period-fixed effects, with time periods being years ending March, May, and June. Density plots 
show the daily distribution of soil moisture for dairy (left) and sheep/beef (right) farms. 
 

For dairy farms, we estimate a quadratic relationship that shows drier soils are associated 
with reductions in profits. Taking 1 day at 20 mm of soil moisture deficit (a relatively wet 
soil state) and moving it to 140 mm of soil moisture deficit (a very dry soil state) is 
associated with a decline in profits during the same year of approximately $4.59 per ha, or 
around 101% of the 2016–2018 daily average operating profit. We do not see clear 
impacts of soil moisture causing changes in the following 2 years’ profit, nor strong 
evidence of non-linearity beyond that captured by the quadratic (see Figure A.1).  

Similarly, for sheep/beef farms we estimate a quadratic relationship that shows drier soils 
reduce profits. However, for the sheep/beef case we find that soil moisture changes affect 
profits over 2 years rather than in just the same year. A change in soil moisture from 
20 mm deficit to 140 mm deficit for 1 day reduces sheep/beef profit by $0.34 per ha in the 
same year but by an additional $0.98 per ha in the following year, a combined effect of 
around 103% of the 2016–2018 daily average operating profit. This temporal pattern 
probably occurs because stock whose meat and wool are sold today (and counted in this 
year’s profits) have been exposed to environmental conditions for several preceding years. 
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As with dairy, we do not see clear evidence for further lagged effects, nor non-linearity 
beyond quadratic (see Figure A.1).  

In addition to the clear evidence for soil moisture effects, we find some evidence that 
year-to-year changes in the frequency of warm temperatures above 20°C cause 
statistically significant changes in the profits of sheep/beef farms (Figure 2), beyond any 
changes already captured by soil moisture. We do not find any clear evidence for dairy. 
Because we do not find evidence that temperatures affect the profit of sheep/beef farms 
in the same year (see Figure A.1), Figure 2 shows the effect of changes in temperature on 
profits both 1 and 2 years following the temperature changes. 

 

Figure 2. Estimated effects of changes in daily soil moisture (left) and hourly temperature 
(right) on farm profit for sheep/beef farms.  
Notes: 
See Figure 1 for a description of the soil moisture (left) plot. Plotted values for temperature (right) 
show the predicted change in profit that would result from changing 1 day from 20°C to other 
values ranging from 0°C to 25°C. The light-blue line (top) shows the effect on profit for the first year 
following temperature changes. The teal line (middle) shows the effect on profit for the second year 
following temperature changes. The dark blue line (bottom) shows the additive effect on profit over 
both the first and second years following temperature changes. Shaded areas are 95% confidence 
bands calculated robust to error clustering by year and farm. Confidence bands represent 
uncertainty associated with the combined effects. Underlying regressions include enterprise and 
region-by-time-period-fixed effects, with time periods being years ending March, May, and June. 
Density plots show the daily distribution of soil moisture (left) and the hourly distribution of 
temperature (right) for sheep/beef farms. 
 

The point estimates in Figure 2 are very large. Moving 1 hour of temperature from just 
20°C to 23°C is associated with a loss of approximately 100% of hourly average operating 
profit (CI: 7–193%), accruing over the 2 years following the year that includes the 
temperature event. In this model, moving an hour of temperature from 20°C to 25°C 
results in a loss of approximately 290% of hourly-average operating profit (CI: 65–517%). 
These changes are, however, statistically noisy and point estimates should be interpreted 
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with caution. These estimated losses from increasing hot temperatures are also partially 
matched by gains from increasing moderate temperatures (from around 8°C). Moving an 
hour of temperature from 8°C to 20°C results in a gain of 153% of average daily operating 
profit (CI: 2–303%). 

1.5.2 Climate change projections 

Figure 3 shows our results for projected profits under climate change based on the 
regressions presented in Figure 1. Under the high-climate-change scenario, RCP8.5, our 
regression results projected forward using climate data suggest that soil moisture change 
will steadily cause expected profits of Aotearoa pastoral farming to decline up until the 
end of the century. The pace of the reductions is modest, at around 2.5% of 2016–2018 
taxable profit per decade for dairy and around 0.9% of 2016–2018 taxable profit per 
decade for sheep/beef, resulting in losses of 20% and 7%, respectively, by 2100. 

 

Figure 3. Projected effects of soil moisture change on expected profit of dairy (left) and 
sheep/beef (right) farms from 2018 to 2100 with both statistical and climate-model 
uncertainty. 
Notes: 
Results are calculated using 1,000 random draws of coefficients from the estimated joint 
distributions. These 1,000 draws are applied to climate projection data derived from each of the six 
RCMs. Underlying regression results are shown in Figure 1. All values are first lowess smoothed, 
then differenced relative to the smoothed value for 2018. Solid red lines show the median 
projection for each year across all GCMs. Inner shaded areas and boxes in boxplots show the 25th 
and 75 percentile projections for each year across all GCMs. Outer shaded areas, dashed red lines, 
and whiskers in boxplots show the 5th and 95th percentile projections for each year across all 
GCMs. 
 

Figure 3 also includes box-and-whisker plots that compare the distribution of lost profits 
in 2100 under the moderate-climate-change scenario RCP4.5 to that under the high-
climate-change scenario. The scale of losses in both industries under this moderate 
scenario is around half that in the high one, suggesting that reductions in global 
greenhouse gas emissions will result in benefits to the productivity of New Zealand 
farmland.  



 

- 14 - 

Figure 4 shows our results for projected sheep/beef profits under climate change based 
on the regression presented in Figure 2, which includes both soil moisture and 
temperature variables. Because the scale of warming and the estimated negative effects of 
hot temperatures are so large, Figure 4 shows a projected reduction in the profitability of 
sheep/beef farming in Aotearoa at a scale much larger than that which we project when 
changing just soil moisture. At 2100, we project a 54% reduction in taxable profits under 
RCP8.5, around eight times the size of the estimated reduction when using the soil 
moisture-only model. However, because the estimated temperature effects are so 
statistically noisy, the scale of the uncertainty for these estimates is also very large. The 
95% confidence interval stretches from a small gain of 1% to a loss of over 100%, noting 
that for simplicity the projection assumes that all sheep/beef farms in the data continue to 
operate and that there are no price increases due to climate change. If climate change 
were to cause output price increases, some of these projected negative effects would be 
offset. However, any input price increases (e.g. fertiliser costs) would further reduce the 
returns to pastoral farming.  

 

Figure 4. Projected effects of soil moisture and temperature change on expected profit of 
sheep/beef farms from 2018 to 2100 with both statistical and climate-model uncertainty.  
Notes: 
Results are calculated using the same procedure as in Figure 3. Red long-dashed line shows the 
central results from Figure 3. 
 



 

- 15 - 

A surprising feature of Figure 4 is that it projects reductions in the profitability of 
sheep/farms from day one. This is surprising because the regression model (Figure 2) 
estimates gains from increasing moderate temperatures from 8°C to 20°C and the bulk of 
the historical distribution is below 20°C. The negative effects of increasing hot 
temperatures as well as drying soils outweigh these moderate temperature increases right 
from the start of the projection.  

Figures 5 and 6 show the annual change in profits projected by each of the six GCMs for 
dairy and sheep/beef, respectively, using the results from our soil moisture-only models 
(Figure 1). These figures show the central estimates that go into Figure 3 prior to pooling 
and smoothing. In addition to the projected output from the climate models (from 2001 to 
2100; red dots), we also overlay the analogous back projections using the historical 
observed weather data (from 2002 to 2018; grey dots) with the two lowest historical values 
showing the 2008 and 2013 droughts. 

  



 

- 16 - 

 

Figure 5. Projected effects of soil moisture and temperature change on annual profit of dairy 
farms from 2000 to 2100 from six GCMs.  
Notes: 
Red dots show predicted difference in profit relative to the smoothed value for 2018, calculated 
using output from each of six GCMs (GCM names are panel titles). Grey dots show predicted values 
using historical data vertically centred to minimise the vertical distance between the historical 
predictions (grey dots) and the smoothed GCM predictions (red dashed line). 
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Figure 6. Projected effects of soil moisture and temperature change on annual profit of 
sheep/beef farms from 2000 to 2100 from six GCMs.  
Note: The description in Figure 5 also applies to this figure. 
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First, the comparison between the historical values and the climate-model back 
projections over the historical period show that the annual variability in projections in the 
climate models does tend to approximately match the historical variability (potentially a 
slight underestimate of the true variability). For example, the simulated drought in 2006 
from the GISS-EL-R model approximately matches the scale of the 2013 historical drought.  

The figures also show that each of the six GCMs projects declines in average profits over 
the century; no model projects a gain on average. However, several of the models also 
show that the decline in projected profits in the worst years is faster than the average 
decline, meaning that the worst drought years’ projected profits exhibit larger deviations 
from normal later in the century compared to earlier. While normal years are getting 
worse, in some models the drought years are also getting worse relative to the shifting 
normal. This pattern is most apparent in the BCC-CSM1.1 and NorESM1-M models, 
somewhat present in the GISS-EL-R, HadGEM2-ES, and GFDL-CM3 models, but largely 
absent in the CESM1-CAM5 model.  

To give a broad sense of the expected frequency of future large droughts, we can examine 
the frequency of large droughts before 2050 and compare this to after 2050. The six GCMs 
show a 2% chance of a drought in dairy land more severe than the 2013 drought before 
2050 relative to the shifting normal (i.e. 6 years are worse than 2013 across all GCMs out 
of 6 × 50 years).11 The probability of these large droughts increases to 4.2% per year after 
2050, indicating that the variability of profits is set to increase over time. In absolute terms, 
the chance of a drought worse than the one in 2013 increases from 3.7% per year before 
2050 to 13% after 2050.  

However, while the frequency of large droughts is projected to increase substantially, the 
GCMs do not show the scale of these droughts increasing many-fold. Across the six GCMs, 
there are just two droughts at least 50% more severe than the 2013 drought after 2050 (a 
0.7% per year chance) relative to the shifting normal. There are no such droughts 
predicted by the models before 2050. There is a 3.6% chance of a drought more than 50% 
larger (in absolute terms) than the 2013 drought after 2050, and the models predict no 
such very large droughts before 2050. The largest drought in the projections data is 
around twice the severity of the 2013 drought. 

1.6 Discussion 

The results in this chapter show the extent to which variation in soil moisture and 
temperature affect the profitability of livestock farms in Aotearoa: as a result of 1 day in a 
severe drought, both dairy and sheep/beef farms experience a drop in annual operating 
profit of around 1 average day’s worth. The fact that for both dairy and sheep/beef the 
effect of a dry day is around 100% of daily average operating profit should give readers 
confidence in these results. It is very intuitive that if the farm is so dry that no grass grows, 

 

11 For brevity, we describe these changes in probabilities for dairy only. See Figure 6 for the sheep/beef annual 
data. 
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the farm then produces no net income that could go towards covering capital costs. It is 
also intuitive that, for sheep/beef farms, these effects will primarily accrue in the year 
following the dry spell.  

While uncertain, our results for sheep/beef also suggest that hot temperatures may be 
very damaging to profitability. Given that the results show the potential scale of damage 
from a warming climate is so large, these results warrant significant effort from future 
research to determine these relationships with more precision. This future research could 
involve better modelling heterogeneity as well as better controlling for (currently) 
unmeasured contributors to profits, collecting higher-quality data, or waiting for more 
data from warmer years.  

This chapter also shows that climate model outputs suggest that these historical 
relationships would translate into modest reductions in expected profits over the coming 
century, with projected losses of around 20% and 7% of total taxable profit for dairy and 
sheep/beef farms, respectively, due to reduced productivity under climate change. The 
climate projections suggest that the future droughts will become much more frequent and 
somewhat larger in scale. Future droughts, however, are not projected to become several 
times worse in severity than recent years. The pace of these reductions in profitability is 
unlikely to be sufficient to cause substantial industry exit (i.e. land-use change), especially 
from dairy farms that have substantial sunk capital investments. Any climate-change-
induced price increases in livestock products (relative to other land product prices) will 
work against any pressures arising due to these productivity losses.  

One potential use of these results is to better understand how future climate change 
might encourage or discourage changes in land use as well as other adaptation actions. 
Given that animal agriculture is a major contributor to both climate and water pollution, 
understanding the extent to which climate change might affect baseline pollution is 
important for anti-pollution policy over the coming decades. However, what’s important is 
the relative attractiveness of animal versus other land uses. Thus, to gain a full 
understanding of how climate change might affect land-use pressures, we require profit-
weather functions for all relevant land uses, in addition to those provided here for dairy 
and sheep/beef.  

A limitation of the methods employed in this chapter is that they do not account for costs 
that change with the climate but are fixed in time. Farms in drier/warmer areas may have 
made costly investments that allow them to reduce the effect of year-to-year changes in 
weather on operating profits. The benefits of these investments are captured in the 
average effects we estimate here, but the capital costs of those investments are not. One 
potential solution to this problem, proposed by Deryugina and Hsiang (2017), is to allow 
the effect of year-to-year weather to vary by baseline climate.12 A future iteration of this 
work could see the extent to which their method affects the conclusions of this report.  

 

12 The mathematical argument for why this works is technical, and interested readers are encouraged to read 
the aforementioned paper. 
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While the productivity of animal agriculture and employment (see chapter 2 of this report) 
are important contributors to the economic well-being of many in Aotearoa, there are 
several other important outcomes that may be affected by climate change and that have 
been identified and measured using similar data-driven quantitative methods to those we 
use here. These include human health (Carleton et al. 2020), cognitive performance (Graff 
Zivin et al. 2018), crime and conflict (Hsiang et al. 2013), and energy use (Auffhammer et 
al. 2017). There are also efforts to combine these estimates into summary measures that 
describe the comprehensive net costs of changes to the climate for the USA (Hsiang et al. 
2017) and the globe (work in progress presented by Greenstone 2016). A missing piece in 
these efforts is any study that aims to quantify the effect of climate change on ecosystem 
services such as species preservation. Future research could move through these other 
important outcomes to try to measure the extent to which they may suffer damage (or 
accrue improvements) under climate change.  

Understanding the scale of the expected impacts of climate change across all sectors is 
key for central government when considering future budgets for adaptation support. If, for 
example, the scale of expected net damages to agriculture was 1% of the expected net 
harm to human health, it would be difficult to justify putting 50% of central government’s 
adaptation budget into agriculture (numbers are for illustration only and are not 
necessarily correct). However, these quantitative comparisons are not yet straightforward, 
because the underlying quantitative studies have not yet been executed across all sectors. 
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2 Empirical effects of drought on agricultural employment 

2.1 Introduction 

Most of the international and New Zealand research studying the impacts of drought or of 
climate change has focused on either macroeconomic or agricultural outcomes (e.g. Gross 
Domestic Product, agricultural yields, and agricultural prices). This chapter, however, adds 
to the broader global research effort by focusing on the implications of historical drought 
for agricultural employment, earnings, sales, and purchases at the local level. 

Since the impacts of drought on vulnerable communities are most likely to arise from local 
economic slowdowns, we start by examining the historical impacts of drought on 
employees and businesses. As the effects of drought intensify and begin to affect local 
farms, we would expect to see an impact on the wages and employment of workers on 
these farms, which, in turn, means these workers and farms are spending less in the local 
community. This would be especially true for areas that rely on seasonal, migrant, and 
temporary workers during their busiest times. As the drought intensifies, we would expect 
to see these effects ripple through the local economy as local businesses see a slowdown 
in their revenues.  

For our analysis, we employ methods from the climate econometrics literature (Hsiang et 
al. 2013; Schlenker & Roberts 2009) that use empirical data to value expected future 
changes in the climate. In this literature, researchers estimate historical relationships 
between weather and socioeconomic outcomes and then make projections of future 
outcomes using forecasts of climate change. The climate econometrics field aims to 
inform global climate policy as well as identify opportunities for adaptation. These works 
have documented impacts of climate change on GDP (Burke et al. 2015), agriculture 
(Schlenker & Roberts 2009), civil conflict, energy use (Auffhammer et al. 2017), labour 
supply (Graff Zivin & Neidell 2014), and international migration (Cai et al. 2016), among 
other economic and social outcomes. These methods have both empirical tractability as 
well as clear theoretical justifications (Hsiang 2016; Lemoine 2018), including the 
conditions under which the use of year-to-year variation in weather to identify historical 
relationships is appropriate to identify the impact of a change in climate.  

There are a variety of other literatures into which this work fits: the economic impacts of 
drought in New Zealand, the effects of climate change on agricultural firms and 
production, and the economic costs of natural disasters. Our work is the first to leverage 
detailed, linked employee-employer microdata to better understand the relationship 
between drought and employment in New Zealand. Much of the domestic work looking at 
the economic impacts of drought does not assess the implications of changes in the 
prevalence and intensity of drought under climate change and generally looks at the 
broader New Zealand economy, with no assessment of local and regional effects. Kamber 
et al. (2013) look at the impact of drought using an empirical macroeconomic model to 
predict the likely effects of the 2013 drought on the broader economy. Their results 
showed that the 2013 drought was likely to lower annual GDP by 0.3%. Their model, 
however, did not look below the national level to see how businesses, employees, or 
communities were likely to fare during and after the drought; nor did they look at regional 
impacts.  
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Kamber et al. (2013) build on previous research from Treasury, which incorporates weather 
shocks (including drought events) in their models (Buckle et al. 2002). The Ministry for 
Primary Industries (MPI) also appear to incorporate drought events into their annual 
Situation and Outlook for Primary Industries when predicting production for the year (MPI 
2018). Yet, the work by both Treasury and by MPI focuses on macroeconomic factors as 
opposed to more localised outcome measures.  

Other work in New Zealand has focused on the impacts of weather or drought on land 
use, land values or agricultural productivity (Allan & Kerr 2016; Apatov et al. 2015; Timar 
2016), but it has not gone further to look at these effects on employment, earnings, or 
other firm outcomes.  

The literature closest to our proposed work examining the impact of drought on local 
community outcomes is that of the local economic impacts of natural disasters, which uses 
similar data to examine the effects of these disasters on employees and local businesses. 
From a methodological standpoint, the closest such work includes the following: Fabling 
et al. (2014) assessing the effects of the Canterbury earthquakes on businesses and 
workers; Groen et al. (2017) assessing the effects of hurricanes in the US on individual 
employment and earnings; and Bastos et al. (2013) examining the long-term effects of 
drought on local labour markets in Brazil. Basker and Miranda (2016) also assess the 
impact of a major hurricane on business survival. All find significant impacts on employees 
and businesses in the affected areas.  

Our analysis is different from these works because it is not looking at the effects of a 
discrete event, where the effects are felt in a relatively short amount of time.  The effects 
of drought tend to accumulate over time, which makes identifying the start and end of the 
event difficult. So, instead of a binary drought indicator, we use a flexible representation of 
drought, which we construct using measures of the full distribution of daily soil moisture 
and temperature. We use these constructed weather variables combined with our 
outcomes measures in a fixed-effects regression model, which allows us to estimate the 
effect of extreme weather conditions on employment, earnings, sales, and purchases.   

2.2 Data sources 

This section describes the data we use for analysis, which include both monthly and 
annual approaches. The monthly data analyses use the time period April 1999 to 
September 2019, while the annual analyses, use the time period 2000–2018 (to include 
only those observations with 12 full months of data).   

2.2.1 Outcome measures 

We obtain data on firms from the LBD13 provided by Stats NZ, which covers the time 
period April 1999 to September 2019, one of the most detailed sources of business data 

 

13 For more detailed information about the LBD, see Fabling & Sanderson 2016.   
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available to researchers in the world. In the LBD, data are primarily available at two 
different firm levels, which reveals information about the structure of the firm: the 
enterprise and the geographic unit. The enterprise (ENT) level pertains to a tax-reporting 
legal entity (e.g. sole proprietor, partnership, company). Each enterprise is given a 
permanent enterprise number (PNT) to allow the enterprise to be tracked over time, even 
if there is a change in the type of legal entity. For example, if a partnership decides to 
change to a limited liability company but is otherwise essentially the same entity, its PNT 
will remain the same.  

The second level is the geographic unit (GEO), which is also known as the establishment or 
plant level. These units could be storefronts, headquarters, farms, warehouses, or plants. 
Each GEO has also been given a permanent, unique identifier (PBN), which allows us to 
track continuing activity at the same location. Establishment location is available at the 
meshblock level, which has an average size range of 30–60 dwellings (around 60–120 
residents). Note also that GEOs and ENTs are assigned separate industry codes, which can 
differ even across the Level 1 (Division) ANZSIC06 industry classifications14.  

The LBD also contains detailed employment information, which is sourced from the 
Employer Monthly Schedule (EMS)15 data from Inland Revenue (Fabling & Sanderson 
2016). The EMS data provide enterprise-level payroll information, including individual 
employees’ monthly earnings and the total wage bill paid by the enterprise each month. 
Stats NZ links the employees in the EMS data to the enterprise’s physical locations (i.e. 
establishments) using a matching algorithm, as described in Fabling & Maré 2015. 
Employees have also been assigned unique identifiers, which allows us to track them over 
time and across employers. Hence, if an employee works at multiple jobs in a given month 
or changes jobs across months, we can track their employment as long as they are 
employed as an employee in New Zealand. We primarily rely on the derived employment 
tables as described in Fabling & Maré 2015, which include a measure of full-time 
equivalency (FTE) for employment in the month and whether or not the employment spell 
is a short spell (less than 3 months in duration). 

Stats NZ also receives records of Inland Revenue’s GST returns, which are filed on a 
monthly, bi-monthly or six-monthly basis (depending on the size of the firm) by the 
enterprise. We use the GST data to examine sales and purchases as measures of firms’ 
health. We use the monthly GST tables, as described in Fabling & Maré 2019.  Given that 
GST returns are at the enterprise level, we calculate establishment-level GST amounts (for 
sales and purchases) using the establishment’s share of total enterprise employment and 
using the establishment’s share of total enterprise FTEs. Since these data are at a fairly 
high frequency16, we can see changes evolve as drought conditions intensify. 

 

14 The full classification system is available at 
https://www.abs.gov.au/ausstats/abs@.nsf/0/20C5B5A4F46DF95BCA25711F00146D75?opendocument  
15 The EMS is filed by all businesses with employees as part of the administration of the Pay-As-You-Earn 
income tax system.   
16 These data are reported at 1-, 2-, or 6-month intervals depending on the size of the firm, but the majority 
report at 2-month intervals.   
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Our outcome measures then include the following: 

 employment: measured in terms of worker-jobs (distinct worker-enterprise 
combinations) in the month 

 FTE: a measure of full-time equivalency that is based on earnings in the month 
relative to the earnings at the minimum wage, as described in Fabling & Maré 
2015 

 short spells: measured in terms of the worker-job employment spell being less 
than 3 months, as described in Fabling & Maré 2015 

 gross earnings: gross earnings of employees, as reported in the EMS data 
 GST sales: total GST-inclusive sales apportioned to month and to establishment 
 GST purchases: total GST-inclusive purchases apportioned to month and to 

establishment. 

All of the outcome measures are first determined at the establishment-level, which is used 
to assign the industry and meshblock codes. Industry and meshblock measures are then 
aggregated based on the establishment-level data.  Annual measures are sums of the 
monthly totals.   

For these analyses, we start with data aggregated across all industries categorised as 
‘Agriculture, Forestry, and Fishing’, excluding any establishments categorised as 
‘Aquaculture’ (A02) or ‘Fishing, Hunting and Trapping’ (A04). Hereafter, we refer to all of 
the included industries as ‘All Industries’. We also run separate analyses for ‘Food Product 
Manufacturing’ (C11), since this industry could also be affected by drought conditions for 
its inputs. Our data are grouped using Level 3 (Group) ANZSIC06 classifications, which are 
based on the establishment’s industry.  

2.2.2 Weather 

A detailed description of the weather data appears in the previous chapter (see section 
1.3.3). The only change made for this chapter is to divide the soil moisture variables by 
1,000 (with the exception of the soil moisture quartic variable, which we divide by 100,000) 
to aid the display of the coefficients in the tables. 

2.3 Methodology 

The statistical approach we use is two-way panel fixed effects. The identification of the 
statistical relationships using this approach relies on comparing how variation in drought 
intensity from time period to time period is associated with changes in the outcome 
variable, controlling for effects that are common across the country in a given time period. 
The primary advantage of the fixed-effects approach is that it allows us to control for 
unobservable factors that are specific (i.e. fixed) to a location (e.g. soil quality) or time 
period (e.g. agricultural prices). The random variation in drought intensity across both time 
and space provides a natural experiment that allows us to identify the effects of drought 
on our outcomes of interest. 
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Similar to the work of Deschenes and Greenstone (2007), Fabling et al. (2014), and Groen 
et al. (2017), we track how the impacts of drought persist or evolve over time. For example, 
a severe drought in a community heavily dependent on agriculture could affect its 
employment and growth for years into the future. We examined these effects using 
contemporaneous weather for estimation, and also 12 months of lagged drought 
conditions to link earlier droughts to current outcomes.  

Using this basic framework, we examined differences between the effects of weather 
conditions and our outcome measures, as outlined in section 2.1.1  

Our general framework is based on the following specification: 

𝑌௧ = 𝛼 + 𝛾௧ +𝑓௧ି(𝑾𝒊,௧ି)



+ 𝜀௧ 

The dependent variable will be the outcome of interest, 𝑌௧ , for unit  𝑖 (establishment or 
meshblock) in time 𝑡.17 This could be, for example, monthly employment or monthly 
earnings for the establishment or for the meshblock. The 𝛼 terms are the unit-fixed 
effects that control for unobservable determinants of 𝑌௧ that are fixed within the unit over 
time; the 𝛾௧ terms are the time-fixed effects, which control for factors that are common to 
the sample in time 𝑡. The 𝑾𝒊,௧ି variables will primarily be measures of the weather 
(temperature, soil moisture) for unit 𝑖 but 𝑘 periods before 𝑡, and following current 
practice in the climate econometrics literature, the function 𝑓௧ି൫𝑾𝒊,௧ି൯ allows for the 
non-linear estimation of the relationship between the daily weather measures, 𝑾𝒊,௧ି, and 
the outcome, 𝑌௧ , but still allows us to compare outcomes for different time periods to 
examine the persistence of the effects of drought.  

A way to think about these 𝑓 functions is that they summarise the daily distribution of the 
weather variables using a small number of variables, aggregating them up to the level of 
(possibly annual) time period 𝑡.18 This methodology allows us both to compare the 𝑓 
functions over time (i.e. different 𝑘’s) and to examine the persistence of the effects of 
drought on communities relative to similar communities without drought. The 𝑾𝒊,௧ି 
variables are primarily the monthly soil moisture and temperature variables. 

We cluster the standard errors on the cross-sectional variable (i.e. either at the 
establishment or meshblock level) and use heteroscedasticity-consistent covariance 
matrices, though using heteroscedasticity- and autocorrelation-consistent covariance 
matrices does not change the results. Moreover, the panels are unbalanced. Using 
balanced panels would exclude establishments and meshblocks that do not have 
consistent employment over the entire sample, which may exclude some of the interesting 
variation.  

 

17We start with months as the basis for time periods, but also aggregate to annual measures, primarily for the 
growing year (July to June).   
18 We refer interested readers to section 4.1 of Hsiang (Hsiang 2016) for the mathematical details of this 
method. This method has successfully been applied in the New Zealand context in Bell 2017. 
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2.4 Results 

This section begins with descriptive analysis of key variables and then looks at the 
regression results. While we produce results for all our outcome measures, we find that 
the patterns we see for employment are representative of those that we see for the other 
outcome measures. For the sake of brevity, however, we only present the results for 
employment. Moreover, we run a similar analysis for food manufacturing, but we find few 
effects beyond those presented for the primary agricultural products. Again, for the sake 
of brevity, we do not publish all of those results in this chapter.   

2.4.1 The agricultural sector 

Figures 7 to 14 show monthly employment over the analysis period for all industries 
included in our analysis, as well as a sample of individual sectors: Fruit and Tree Nut 
Growing (A013), Sheep and Beef Farming (A014), and Dairy Farming (A016). These figures 
show that employment – whether measured as worker-jobs, FTE, or short spell jobs – in 
the agricultural sector has a high degree of seasonality, with employment typically peaking 
in the summer months and then bottoming out in the winter months.  For all industries, 
worker-jobs ranged from approximately 65,000 to over 80,000 in the troughs during the 
analysis period; whereas around the peaks, worker-jobs range between 98,000 and 
118,000.  

 

Figure 7. Monthly employment in all agricultural industries, 1999–2019. 
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Figure 8. Monthly employment in all industries, 2010–2015. 
 

 

Figure 9. Employment in fruit and tree nut growing (A013), 1999–2019. 
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Figure 10. Employment in fruit and tree nut growing (A013), 2010–2015. 
 

 

Figure 11. Monthly employment in sheep, and beef farming (A014), 1999–2019. 
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Figure 12. Monthly employment in sheep, and beef farming (A014), 2010–2013. 
 

 

Figure 13. Monthly employment in dairy farming (A016), 1999–2019. 
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Figure 14. Monthly employment in dairy farming (A016), 2010–2015. 
 

When we focus on our employment measures around the 2013 drought, we see similar 
patterns, with no discernible change during or after the drought.  To further examine the 
seasonality in the underlying industries, we ranked each month in a year using the total 
number of worker-jobs in the month, with 1 indicating the month with the lowest 
employment and 12 indicating the month with the highest employment.  Figure 15 shows 
these results for three individual industries: Fruit and Tree Nut Growing, Sheep and Beef 
Farming, and Dairy Farming.  These results show that employment in summer months is 
generally higher than in winter months; that in all three industries December generally has 
the highest employment; and that the seasonal pattern is different for these three 
industries. Hence, when running the regressions, we should run the analysis separately for 
the industries.   

Table 2 also provides summary statistics for our outcome measures and weather variables 
by industry (including all industries) for all months and for November to March.  
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Figure 15. Ranking of monthly (lowest = 1, highest = 12) employment during the year, in 
sheep, and beef farming (A014), fruit and tree nut growing (A013) and, dairy farming (A016).  
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Table 2. Means and standard deviations of key variables by industry 

Industry 

Employment 
(worker-jobs) FTE Short spells Soil moisture Temperature 

All 
months 

Nov–
Mar 

All 
months 

Nov–
Mar 

All 
months 

Nov–
Mar 

All 
months 

Nov–
Mar 

All 
months 

Nov–
Mar 

All Agriculture 
10.9 11.8 7.3 7.8 1.8 2.2 –1.3 –2.4 12.8 16.1 

22.1 25.0 15.3 16.8 6.2 8.0 1.3 1.1 3.9 2.4 

Nursery/Floriculture 

A011 

8.1 8.3 5.7 5.8 0.7 0.9 –1.4 –2.5 13.5 16.7 

13.4 14.1 9.9 9.9 3.8 5.0 1.3 1.1 3.7 2.3 

Mushroom/Veges 

A012 

10.8 11.6 7.5 7.9 1.1 1.5 –1.5 –2.6 13.4 16.7 

24.6 25.7 19.1 20.0 3.5 4.2 1.4 1.1 3.8 2.2 

Fruit and Tree Nut 

A013 

14.5 17.0 8.7 9.8 3.4 4.8 –1.5 –2.6 13.5 16.8 

32.9 40.3 20.3 23.0 12.5 17.1 1.4 1.0 3.8 2.2 

Sheep/Beef 

A014 

5.5 6.0 3.1 3.2 1.5 1.9 –1.4 –2.4 12.2 15.5 

7.7 9.0 4.9 5.8 3.4 4.0 1.3 1.1 4.0 2.5 

Other Crop 
Growing 

A015 

3.7 3.9 2.5 2.7 0.6 0.7 –1.5 –2.5 12.5 15.9 

6.1 6.7 4.4 4.6 2.5 3.3 1.4 1.1 4.0 2.4 

Dairy Cattle 

A016 

6.0 6.3 4.6 4.8 0.4 0.4 –1.2 –2.2 12.9 16.2 

7.0 7.2 5.6 5.7 1.0 1.1 1.3 1.1 3.8 2.4 

Poultry 

A017 

10.0 10.0 7.5 7.6 0.3 0.3 –1.4 –2.5 13.5 16.8 

19.0 19.0 16.3 16.3 0.9 0.9 1.3 1.1 3.7 2.2 

Deer 

A018 

2.8 2.9 1.9 2.0 0.4 0.5 –1.4 –2.3 11.2 14.7 

3.3 3.4 2.6 2.7 1.2 1.3 1.3 1.1 4.1 2.4 

Other Livestock 

A019 

4.4 4.6 3.3 3.5 0.3 0.4 –1.4 –2.4 13.0 16.3 

7.1 7.6 6.0 6.3 1.1 1.3 1.3 1.1 3.9 2.4 

Forestry 

A030 

8.3 8.3 7.3 7.2 0.4 0.4 –1.3 –2.3 12.8 16.1 

13.4 13.4 12.4 12.4 1.7 1.9 1.3 1.1 3.9 2.3 

Forestry Support 
Services 

A051 

9.7 9.2 7.7 7.3 0.7 0.6 –1.4 –2.4 12.9 16.2 

18.5 17.6 14.7 14.1 2.0 1.7 1.3 1.1 3.8 2.3 

Ag Support 
Services 

A052 

10.5 11.4 6.6 7.2 2.0 2.4 –1.5 –2.5 12.8 16.2 

30.3 33.3 20.9 23.0 7.3 8.8 1.3 1.1 3.9 2.4 
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2.4.2 Regression results 

We begin the analysis using only the linear soil moisture measure.  Table 3 shows the 
results for meshblock monthly employment. The first two columns for Table 3 include all 
months of the year for the period April 1999 to September 2019, and the second two 
columns only include the driest months (November to March).  The first row of the table 
shows the pooled result for all of the industries shown in the subsequent rows, and the 
subsequent rows show the results for each individual industry.   

For all industries, the coefficient for soil moisture is insignificant at the 5% level when all 
months are included in the model, but positive and significant when only using the peak 
months.  For the individual industries, the coefficient on the linear soil moisture measure is 
insignificant for both specifications for most industries. The exceptions are Fruit/Tree Nut 
Growing (A013), which is negative and significant when all months are included but 
insignificant for peak months; Sheep/Beef (A014), which is negative and significant for 
peak months but insignificant for all months; and Dairy Cattle (A016), which is positive and 
significant for both specifications.  We run the same analysis using the other outcome 
measures and also using the establishment level, and the patterns remain largely the 
same.  To conserve space, we report only the results for employment at the meshblock 
level19.   

We also added the polynomial terms for soil moisture (2nd,  3rd, and 4th powers) to the 
regression. The results of this analysis are shown in Table 4 (all industries) and Table 5 
(Dairy). The coefficients themselves are difficult to interpret, so we display the results 
graphically in Figure 16 (all industries) and Figure 19 (Dairy). Table 4 (all industries) and 
Table 5 (Dairy) also show the results for including the linear temperature variable (columns 
3 and 4) as well as the model with the non-linear soil moisture and temperature measures 
included (columns 7 and 8) with the graphical results in Figure 17 (all industries) and 
Figure 20 (Dairy). From these results we see that temperature plays a role in meshblock 
employment for all industries combined, as well as for Dairy.  When using all months for 
all industries, the coefficient on the linear temperature measure is positive and significant. 
Moreover, temperature seems to be significant primarily when using all months, both for 
all industries and for Dairy.  This implies that temperature is less important when using 
only peak months.  

To examine the effects of past weather on current outcomes, we also included 12 lags of 
the linear soil moisture measure with the contemporaneous linear measure in the monthly 
regressions.  In Table 6 we report these results for all industries (columns 1 and 2) with the 
graphical representation in Figure 18, Fruit/Tree Nut Growing (columns 3 and 4), 
Sheep/Beef (columns 5 and 6), and Dairy (columns 7 and 8) with the graphical 
representation for Dairy in Figure 21. These results indicate that for all specifications, 
lagged effects are significant but vary based on the industry, and that, except for Dairy, the 
significant coefficients are a mix of positive and negative effects depending on how long 

 

19 Meshblocks are more consistent over time than establishments, so using meshblocks allows us to include 
employment from establishments that might otherwise need to be dropped.   
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the lag is. For Dairy, the coefficients for soil moisture for the contemporaneous month and 
for all 12 lags are significant and positive. For Dairy using only peak months, the 
coefficients for soil moisture for the contemporaneous month and most of the lagged 
months are both positive and significant, with none of the coefficients negative.   

Table 3. Two-way fixed effects, monthly employment for meshblocks using linear soil 
moisture 

Industry 

Soil moisture (all months) Soil moisture (Nov–March) 

Beta 

(t value) 

N 

(R2) 

Beta 

(t value) 

N 

(R2) 

All Agriculture 

0.006632 19373 0.12132* 18592 

(0.20) (0.6211) (2.68) (0.6565) 

Nursery/Floriculture 

A011 

–0.06228 2090 –0.13461 1958 

(–0.54) (0.6428) (–1.10) (0.6485) 

Mushroom/Veges 

A012 

–0.35793* 2307 –0.13962 2156 

(–2.66) (0.7797) (0.3322) (0.7848) 

Fruit and Tree Nut 

A013 

–0.25658 3437 0.351134 3185 

(–1.39) (0.5296) (0.1082) (0.6253) 

Sheep/Beef 

A014 

–0.01314 9671 –0.09086* 9215 

(–0.62) (0.5340) (–2.67) (0.4930) 

Other Crop Growing 

A015 

0.07001 1702 –0.00109 1583 

(–1.23) (0.6737) (–0.02) (0.7306) 

Dairy Cattle 

A016 

0.117311*** 7855 0.068311** 7582 

(7.05) (0.6622) (3.57) (0.6666) 

Poultry 

A017 

0.028542 609 –0.11557 571 

(0.24) (0.8502) (–1.01) (0.8421) 

Deer 

A018 

0.000835 1401 –0.00939 1274 

(0.04) (0.6968) (–0.31) (0.7005) 

Other Livestock 

A019 

–0.0159 3479 0.013613 3178 

(–0.58) (0.7501) (0.38) (0.7725) 

Forestry 

A030 

0.022464 3113 0.032169 2840 

(0.45) (0.8153) (0.46) (0.8178) 

Forestry Support Services 

A051 

–0.08394 1577 –0.06198 1437 

(–1.39) (0.7675) (–0.81) (0.7782) 

Ag Support Services 

A052 

0.136083 8017 0.159187 7529 

(1.59) (0.6754) (1.75) (0.7107) 

*p < 0.05, **p < 0.001 ***p < 0.0001  
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Table 4. Two-way fixed effects, monthly employment for meshblocks (all industries) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Soil Moisture 
0.007 0.121** 0.532*** –0.269* 0.034 0.101* 0.200* –0.12437 

(0.20) (2.68) (4.8) (–2.35) (0.96) (2.26) (2.12) (–1.14) 

Soil Moisture^2 
  0.0025* –0.001   –0.001 0.00214 

  (2.09) –0.41   (–0.42) (1.49) 

Soil Moisture^3 
  –7.27E-06 0.00006**   –4.24E-06 0.000067*** 

  (–0.47) (3.85)   (–0.28) (4.03) 

Soil Moisture^4 
  5.87E-06 0.00004**   0.000013 0.000031* 

  (–0.47) (3.35)   (1.32) (2.92) 

Temperature 
    0.010*** –0.004* 0.0123* 0.033 

    (4.15) (–1.96) (1.96) (0.72) 

Temperature^2 
      0.001 0.003 

      (1.33) (0.69) 

Temperature^3 
      –0.00014 –0.0004 

      (–3.01) (–1.88) 

Temperature^4 
      3.71E-06 9.15E-06* 

      . (2.72) 

Peak (Nov–Mar) N Y N Y N Y N Y 

Number of MBs 19,373 18,592 19,373 18,592 19,373 18,592 19,373 18,592 

R-squared 0.6211 0.6565 0.6212 0.6565 0.6212 0.6565 0.6213 0.6566 

*p < 0.05, **p < 0.001 ***p < 0.0001 (t values in parentheses) 

Soil Moisture^4 (divided by 100,000) and the other soil moisture measures divided by 1,000 (relative to raw 
data)  
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Table 5. Two-way fixed effects, monthly employment for meshblocks (Dairy, A016) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Soil Moisture 
0.117*** 0.068** 0.278*** 0.323** 0.129*** 0.069** 0.119* 0.372*** 

7.05 3.57 6.44 4.41 7.77 3.65 2.75 4.98 

Soil Moisture^2 
  0.001 0.002   –0.001 0.003 

  0.89 1.24   –0.45 1.59 

Soil Moisture^3 
  –0.00002 –0.00002   –0.00002 –0.00002 

  –1.35 –1.31   –1.19 –1.3 

Soil Moisture^4 
  –0.00002* –0.00002*   –0.00001 –0.00002* 

  –2.45 –2.72   –1.59 –2.79 

Temperature 
    0.005*** 0.0002 0.020*** –0.030* 

    10.66 0.25 11.61 –2.44 

Temperature^2 
      –0.002*** 0.004* 

      –6.54 3.13 

Temperature^3 
      0.00009*** –0.0002*** 

      4.82 –3.24 

Temperature^4 
      –0.000001 0.000003 

      . . 

Peak (Nov–Mar) N Y N Y N Y N Y 

N of MBs  7,582 7,855 7,582 7,855 7,582 7,855 7,582 

R-squared  0.6666 0.6622 0.6667 0.6623 0.6666 0.6625 0.6667 

*p < 0.05, **p < 0.001 ***p < 0.0001  

Soil Moisture^4 (divided by 100,000) and the other soil moisture measures divided by 1,000 (relative to raw 
data) 
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Figure 16. Estimated effects of changes in daily soil moisture on employment for all 
industries, using all four polynomial terms for soil moisture in the regression. 

 

Figure 17. Estimated effects of changes in daily soil moisture (left) and hourly temperature 
(right) on employment for all industries, using all four polynomial terms for both soil 
moisture and temperature in the regression. 
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Figure 18. Estimated effects of changes in daily soil moisture on employment for all 
industries, using 12 lags of the linear soil moisture term in the regression. 
 

 

Figure 19. Estimated effects of changes in daily soil moisture on employment for dairy 
farming (A016), using all four polynomial terms for soil moisture in the regression. 
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Figure 20. Estimated effects of changes in daily soil moisture (left) and hourly temperature 
(right) on employment for all industries, using all four polynomial terms for both soil 
moisture and temperature in the regression.  
 

 

Figure 21. Estimated effects of changes in daily soil moisture on employment for all 
industries, using 12 lags of the linear soil moisture term in the regression 
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Our final specification uses annual employment (the sum of the 12 monthly measures) for 
the growing year as the dependent variable and the monthly, linear soil moisture measure 
for that growing year as the independent variable. The results for this analysis are shown 
in Table 7 for all industries (column 1), Fruit/Tree Nut Growing (column 2), Sheep/Beef 
(column 3), and Dairy (column 4).  These results indicate that the relationship between soil 
moisture and employment varies throughout the year.  For example, for all industries, the 
relationship between soil moisture in November and annual employment is negative and 
significant, whereas in December and June the relationship is positive and significant.  The 
relationship in the other months is insignificant. For Fruit/Tree Nut Growing, none of the 
monthly soil moisture measures are significant, and for Sheep/Beef only January is 
significant, and it is negative, which indicates that too much moisture in January may be a 
problem.  Dairy once again stands out from the other industries with a number of months 
having positive and significant coefficients (July, November, December, April, and June); 
however, the coefficient on the May soil moisture measure is negative and significant, and 
the coefficients for the other months are insignificant.   

We ran the same analyses for the Food Manufacturing Sector and found similar results to 
those for the underlying inputs, with even less conclusive results. 
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Table 6. Two-way fixed effects with lagged effects, monthly employment for meshblocks 

Industry 
(1) 

ALL 

(2) 

ALL 

(3) 

Fruit/ 
Tree Nut 
Growing 

A013 

(4) 

Fruit/ 
Tree Nut 
Growing 

A013 

(5) 

Sheep/ 
Beef 

A014 

(6) 

Sheep/ 
Beef 

A014 

(7) 

Dairy 
A016 

(8) 

Dairy 
A016 

Soil Moisture 
0.038 0.064 –0.136 0.043 –0.055* –0.081* 0.070*** 0.044* 

1.38 1.84 -0.97 0.26 –3.12 –3.22 5.15 2.76 

Soil Moisture 
LAG1 

–0.001 0.049 –0.148 0.102 0.060*** –0.005 0.063*** 0.048*** 

–0.07 1.7 –1.94 0.62 5.03 –0.19 9.97 4.09 

Soil Moisture 

LAG2 

–0.011 0.079* 0.081 0.474* 0.018 0.028 0.060*** 0.028* 

–0.61 2.62 0.73 3.14 1.51 1.47 6.76 2.09 

Soil Moisture 

LAG3 

–0.014 0.015 –0.145 –0.470* 0.047*** 0.064* 0.031** 0.094*** 

–0.76 0.37 –1.61 –2.4 4.11 2.28 3.76 4.87 

Soil Moisture 

LAG4 

–0.041* –0.442*** –0.273* –1.964*** 0.003 0.097** 0.034*** 0.035 

–2.17 –5.61 –3.04 –5.09 0.28 3.39 3.99 1.6 

Soil Moisture 

LAG5 

0.046* 0.239* 0.384*** 0.850* 0.011 0.043 0.028** 0.083* 

2.57 3.1 3.94 2.34 1.04 1.24 3.35 2.21 

Soil Moisture 

LAG6 

0.042* 0.241** 0.508*** 1.213*** –0.040*** -0.138*** 0.031** 0.024 

2.07 3.34 4.7 4.39 –3.89 –4.46 3.78 1.07 

Soil Moisture 

LAG7 

0.084*** –0.104* 0.410*** –0.190 –0.021* 0.075* 0.046*** 0.070*** 

4.36 –2.14 4.78 –0.75 –2 3.12 5.2 4.48 

Soil Moisture 

LAG8 

0.114*** 0.120* 0.106 0.490* 0.038** 0.027 0.033** 0.023 

4.75 3.18 0.83 2.17 3.39 1.33 3.86 1.86 

Soil Moisture 

LAG9 

0.005 –0.090* –0.457*** –1.121*** –0.005 0.026 0.045*** 0.067*** 

0.26 –2.93 –3.95 –5.1 –0.4 1.19 5.11 5.41 

Soil Moisture 

LAG10 

0.072*** 0.077** –0.117 0.125 0.042** 0.014 0.031** –0.015 

4.18 3.43 –1.21 0.96 3.58 0.86 3.42 –1.26 

Soil Moisture 

LAG11 

0.062* 0.090** 0.136 0.665*** 0.004 –0.004 0.019* 0.020* 

3.25 3.76 1.22 3.98 0.39 –0.25 3.12 2.29 

Soil Moisture 

LAG12 

–0.076* 0.027 –0.277* –0.105 –0.004 –0.017 0.064*** 0.042* 

–3.34 0.88 –2.31 –0.58 –0.3 –1.02 4.7 2.76 

Peak  
(Nov–Mar) 

N Y N Y N Y N Y 

Number of 
MBs 

19373 18592 3437 3185 9671 9215 7855 7582 

R-squared 0.6212 0.6565 0.5299 0.6261 0.5341 0.4931 0.6624 0.6668 

*p < 0.05, **p < 0.001 ***p < 0.0001  

  



 

- 44 - 

Table 7. Two-way fixed effects with lagged effects, annual employment for meshblocks 
(growing years 2000–2018) 

Industry 

(1) 

ALL 

(2) 

Fruit/ Tree Nut 
Growing A013 

(3) 

Sheep/Beef 

A014 

(4) 

Dairy A016 

Soil Moisture 

July 

–2.433 –9.650 0.437 2.267* 

–1.45 –1.34 0.76 2.31 

Soil Moisture August 
1.662 6.734 1.256 1.178 

0.73 0.77 1.14 0.6 

Soil Moisture 

September 

1.674 –2.053 –0.915 –2.669 

0.83 –0.28 –0.96 –1.87 

Soil Moisture 

October 

1.105 3.678 0.139 –1.583 

0.97 1.05 0.24 –1.81 

Soil Moisture 

November 

–1.887* –1.479 –0.741 1.627* 

–2.29 –0.56 –1.57 2.55 

Soil Moisture 

December 

1.630* 1.777 0.693 1.325* 

2.31 0.8 1.65 2.57 

Soil Moisture 

January 

0.352 0.241 –0.619* –0.422 

0.7 0.12 –1.99 –1.21 

Soil Moisture February 
–0.318 –0.168 –0.072 –0.513 

–0.55 –0.07 –0.17 –1.43 

Soil Moisture 

March 

0.106 0.595 0.600 –0.702 

0.18 0.24 1.55 –1.83 

Soil Moisture 

April 

1.035 –0.249 –0.216 2.184*** 

1.47 –0.1 –0.59 4.66 

Soil Moisture 

May 

–0.813 3.568 0.316 –3.357*** 

–0.81 1.2 0.76 –4.52 

Soil Moisture 

June 

2.542* –0.468 –0.337 9.717*** 

2.03 –0.13 –0.65 7.12 

Number of MBs 17775 2949 8778 7257 

R-squared 0.7459 0.7538 0.7139 0.6954 

*p < 0.05, **p < 0.001 ***p < 0.0001  
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2.5 Conclusions 

Overall, the relationship between drought and employment in New Zealand based on our 
results appears to be complicated, with soil moisture and temperature having different 
and sometimes offsetting effects across industries and even within the same industry (for 
some) over time. Dairy has the most consistent results, with the relationship between 
monthly soil moisture and monthly employment consistently showing up as strong and 
positive. However, when we look at annual employment, even in dairy, we find that 
monthly soil moisture can be positively or negatively related to annual employment 
depending on the month. 

While we focus on employment in this chapter, we also produced results for all of our 
outcome measures (i.e. employment, FTE, short-spell jobs, gross earnings, GST sales, and 
GST purchases) for all of our industries at the PBN and at the meshblock level. However, 
we find that the patterns that we see for employment at the meshblock level are 
representative of those that we see for the other outcome measures and for the PBN level. 
For the sake of brevity, we do not present all of the results in this chapter, but only present 
the results for employment. Moreover, we ran a similar analysis for food manufacturing, 
but we find few effects beyond those presented for the primary agricultural products. 
Again, for the sake of brevity, we do not publish all of those results in this chapter. 
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Appendix 1 – Detailed cleaning steps for farm profits data set 

Tables A.1 and Table A.2 describe the data cleaning steps and the resulting number of 
observations used in the farm profits analysis. First, we use the data from of the Agricultural 
Production Survey (APS) to identify dairy and sheep/beef farming operations with land area 
and animal numbers sufficiently high that we are confident they represent genuine farming 
businesses. Then, we combine the APS data with the Longitudinal Business Frame (LBF) data, 
IR10 financial data and the weather data based on the enterprise identification numbers and 
farm locations. We remove data observations from the combined dataset where there is 
conflicting information on the type of farming operation or locations, missing data on farm 
area, or unusual financial information. See the tables for details of each step. 
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Table A.1 Agricultural Production Survey (APS) data cleaning steps 

Variable names in code 

Dairy Sheep/beef 

Description Remaining 
enterprises 

Remaining 
observations 

Remaining 
enterprises 

Remaining 
observations 

ever_dairy, every_snb 49, 353 491, 880 79, 728 874, 485 
Start with enterprises in the APS which have at least one 
year with dairy or sheep/beef industry codes. 

ever_dairy, every_snb 49, 170 455, 037 79, 494 832, 374 Remove observations with duplicate enterprise number. 

ever_enough_LUgrass_dairy,   
ever_enough_LUgrass_snb 

30, 096 321, 069 39, 315 463, 806 
Keep enterprises with at least 50 ha of grassland in at least 
one year to ensure we keep genuine farming enterprises. 

ever_enough_LUgrass_dairy,   
ever_enough_LUgrass_snb 

30, 096 273, 447 39, 315 403, 353 
Remove observations for enterprises that show as having 
ceased operations in the APS. 

ever_livestock_enough_LUgrass_dairy, 

ever_enough_LUgrass_snb   
28, 827 266, 436 37, 428 388, 467 Remove enterprises with no livestock recorded for all years. 

dairy, sheep_beef in dairy_sheep_beef_filtered 15, 741 198, 474 22, 941 298, 026 
Keep enterprises with effective area of more than 25ha in at 
least 3 years (this is to remove lifestyle blocks all the smallest 
operations). 

dairy_sheep_beef_filtered 13, 536 173, 670 18, 384 241, 701 
Keep enterprises where the minimum number of cattle 
equivalent (i.e. counting 5.5 sheep as 1 unit) in a year are 
higher than 50, in at least 3 years. 
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Table A.2 Longitudinal Business Frame (LBF) data, IR10 financial data cleaning steps 

Variable names in 
code 

Dairy Sheep/beef 

Description Remaining 
enterprises 

Remaining 
observations 

Remaining 
enterprises 

Remaining 
observations 

dairy and sheep_beef 
in ir10_weather_aps 

13, 080 135, 744 17, 739 189, 906 Join iR10 with dairy_sheep_beef_filtered 

dairy and sheep_beef 
in ir10_weather_aps 

12, 159 109, 677 16, 284 148, 995 
Join with location and weather. Observations drop due to missing location, LBF 
industry switches during the year, location switches during the year, or LBF industry 
is not livestock during that year.  

dairy and sheep_beef 
in ir10_weather_aps 

12,096 104,202 16,245 145,560 
Remove observations that have conflicting industries in LBF and APS for the same 
year 

dairy and sheep_beef 
in ir10_weather_aps 

11,685 59,403 15,900 94,665 Removing observations with missing values for effective ha 

data in final_data 10,689 55,050 15,468 92,619 
Removing observations from enterprises that do not record industry as dairy/sheep 
and beef (resp.) for any year of operation remaining in the dataset. 

 10,536 53,934 15,354 91,725 
Removing observations from enterprises that switch industry more than once in the 
remaining sample. 

 10,536 50,997 15,354 89,736 
Keeping observations for the years that they record dairy/sheep beef as  industry 
(resp.) (i.e removing observations from years before or after switching industry). 

 7,521 38,058 10,536 63,798 

Removing observations from enterprises that have unusual average values (remove 
enterprises with averages in the top 5% and bottom 5%) in operating expenses, 
operating expenses per hectare, revenue, revenue per hectare, hectares, operating 
profit, operating profit per hectare. 

 
Not removed 

for dairy 
Not removed 

for dairy 
9,762 49,671 

Removing years for which area is not within 30% of the mean area for that 
enterprise. 

 4,338 29,340 5,598 40,086 
Keep enterprises with at least than 4 years in the sample and keep observations with 
at least 15 observations with the same balance date in the same regional council and 
year. Removals performed iteratively to ensure final sample has these restrictions. 
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Appendix 2 – Further results for farm profits 

 

Figure A.1: Estimated effects of changes in daily soil moisture (top) and hourly temperature 
(bottom) on farm profit for dairy (left) and sheep/beef farms (right).  
Note: See Figs. 1 and 2 for descriptions. 
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Figure A.2: Estimated effects of changes in daily soil moisture (left) and hourly temperature 
(right) on farm profit for dairy farms.  
Notes: See Figs. 1 and 2 for descriptions. 


