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Executive Summary 
Planning for climate change adaptation is challenging due to the inherent uncertainty associated 
with future climate changes. Although we have a range of climate projections, even these cannot 
provide a definitive picture of the future, with little certainty regarding the timing, magnitude and 
location of change. As a result there is increasing interest in approaches that can accommodate 
uncertainty better.  A range of approaches exist and are being developed across several disciplines. 
Each has advantages and disadvantages and is suited for different types of decisions.  

In this study we focus on one of these approaches, Real Options Analysis (ROA), and chose water 
storage for irrigation as an example to demonstrate its use in uncertain futures.  

ROA is most suited to large, one-off investment decisions, such as water storage. Reservoirs are a 
significant investment, and without fully considering the range of future water availability, may turn 
out to be either too large, or not economically viable. Conversely, without their existence to smooth 
out water variability, significant production losses may be experienced in the future. 

While we use a case study location in Canterbury, the intention with this analysis is to demonstrate 
the process of ROA, the type of information developed, and how it can be used to support decision-
making under uncertainty.  The approach can be applied to any type of large irreversible investment 
decision. 

Using the full range of climate model and warming scenario combinations available in New Zealand 
(24), we develop estimates of water requirements out to 2090 for the chosen location. We specify 
two decision points: 2018 and 2050, and construct a decision tree with 256 potential paths. We 
develop a method to use the range of 26 GCM/RCP combinations available in New Zealand to 
generate estimates of likelihood.  Using a backward induction technique, we identify the most cost-
effective storage size.  In this particular example, the most cost-effective option was to construct a 
reservoir for the most conservative climate change outcome in 2018, and in 2050.   The decision to 
build for the smallest climate change is sensitive to a number of factors however, particularly the 
discount rate and the milk price, both of which result in larger reservoirs being more cost-effective in 
the first time period.  The decision is also sensitive to assumptions regarding the likelihood of future 
climate changes – when the higher and lower climate scenarios are assigned a lower likelihood, this 
changes the decision to a larger storage size in 2018.  This analysis illustrates the benefits of ROA 
when the future is uncertain – by  enabling decision-makers to adjust their decisions over time 
rather than locking themselves into a decision made now that has long-term consequences.  

We used an example of water storage on a dairy farm to illustrate how ROA can be used, using the 
climate data available in New Zealand. This method is suitable for application across a range of 
investment decisions in New Zealand, where the initial cost is large and the investment is at least 
partially irreversible.  We believe that using ROA for these types of decisions will enable more cost-
effective investment than cost-benefit analysis or other methods that use only a single climate 
scenario.  
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1. Introduction 
Planning for climate change adaptation is challenging due to the inherent uncertainty associated 
with future climate changes. Although we have a range of climate projections, even these cannot 
provide a definitive picture of the future, with little certainty regarding the timing, magnitude, and 
locations of change.  Within climate models and their projections, a wide range of futures exist, 
creating uncertainty for decision-makers.  This uncertainty stems from four main sources: 

• Scenario uncertainty due to different concentrations of greenhouse gases (GHGs) in the 
atmosphere. This depends on how successful the global community is at reducing emissions; 

• Response uncertainty due to limitations in understanding of climate processes and how they 
are represented in climate models; 

• Uncertainty in natural climate variability;  
• Uncertainty in downscaling emissions (CSIRO and BOM 2015) 

Despite this uncertainty, many adaptation decisions need to be made now, in advance of climate 
change, to effectively reduce future vulnerability to climate change.  Nonetheless, it is clear that 
uncertainty creates challenges. Decisions with long-term implications, such as investment in capital, 
risk locking decision-makers into a certain path with little flexibility to change if other conditions, 
such as the climate, change.  

Because of the challenge of uncertainty, there is increasing interest in approaches that can 
accommodate uncertainty better. We present further background and briefly review these 
approaches in the next section.   In this project, we focus on one of these approaches, Real Options 
Analysis (ROA), and chose water storage for irrigation as an example to demonstrate its use in 
uncertain futures.  

ROA is most suited to large, one-off investment decisions. Constructing a water storage reservoir, or 
dam, is an appropriate example, and particularly pertinent in New Zealand where there is increasing 
interest in, and construction of these.  These reservoirs are a significant investment however, and 
without fully considering the range of future water availability, may turn out to be either too large, 
or not economically viable. Conversely, without their existence to smooth out water variability, 
significant production losses may be experienced in the future. 

We use a case study location in Canterbury, but the intention with this analysis is to demonstrate 
the process of ROA, the type of information developed, and how it can be used to support decision-
making under uncertainty.  The report is structured as follows: In the following section (section 2) 
we provide a background to decision-making under uncertainty, and a literature review of the 
approach taken for this study, ROA. Section 3 provides a summary of climate projections for New 
Zealand and an overview of uncertainty in this context. Section 4 outlines the case study used to 
demonstrate the ROA method in this study, and section 5 presents the data and methods used. 
Section 6 presents the results, while section 7 discusses their implications and limitations, and 
section 8 concludes.  
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2. Background and literature review  
There is increasing interest in decision-making under uncertainty, as it becomes apparent that 
planning for future climate changes needs to begin now, despite the inherent uncertainty in 
understanding the details of the timing, magnitude and location of the climate impacts.   

Decision-making under uncertainty (DMUU) is emerging as a body of approaches, using both 
economic and other techniques, to handle uncertainty.  DMUU uses principles such as robustness, 
flexibility, learning and diversification, to address the challenge of uncertainty in the design of 
practical adaptation plans and projects.  In the area of adaptation economics, support methods and 
tools for the economic appraisal of adaptation are increasing (Dittrich et al. 2016, Watkiss et al. 
2015).  Complementary approaches outside of economics include adaptive management, iterative 
risk management (IPCC, 2014), adaptation pathways (Downing, 2012), and dynamic adaptation 
pathways (Haasnoot et al. 2013).   

Alternative decision-making approaches to appraise and select adaptation options are being 
explored, both in the academic and policy literature (Dessai & van der Sluijs, 2007; Hallegattee al. 
2012; Ranger et al., 2010). The aim is to better incorporate uncertainty while still delivering 
adaptation goals, by selecting projects that meet their purpose across a variety of plausible futures 
(Hallegatte et al., 2012); so-called ‘robust’ decision-making approaches. These are designed to be 
less sensitive to uncertainty about the future and are thus particularly suited for deep uncertainty 
(Lempert & Schlesinger, 2000). Instead of optimising for one specific scenario, optimisation is 
obtained across scenarios: robust approaches do not assume a single climate change projection, but 
integrate a wide range of climate scenarios through different mechanisms to capture as much of the 
uncertainty on future climates as possible. This is achieved in different ways: Portfolio Analysis (PA), 
for example, reduces the risk of choosing a single adaptation option that may prove inappropriate by 
combining several adaptation options in a portfolio. It is thus akin to combining different stock 
market shares in a portfolio to reduce risk by diversification (Markowitz, 1952). Real Options Analysis 
(ROA) develops strategies that can be adjusted (e.g. up-scaled or extended) when additional climate 
information becomes available. It handles uncertainty by allowing for learning about climate change 
over time and originates from option trading in financial economics (Merton, 1973, Cox et al., 2002, 
Wreford et al. 2020). Finally, Robust Decision Making (RDM) identifies how different strategies 
trade-off in order to identify options which might not be optimal under a specific climate outcome 
but rather less vulnerable under many climate outcomes. These techniques are particularly suited 
for adaptation options with long lead and/or life-times as they integrate uncertainty in the decision-
making process.  For a more detailed overview of robust approaches, see Dittrich et al. (2016) and 
Watkiss et al. (2015). 

Real Options Analysis is the extension of the option pricing theory for managing real assets. The 
financial option valuation tool was systematically developed by Merton in his article “The theory of 
rational option pricing” (Merton, 1973) building on Black and Scholes’s (1972) theory of valuation of 
contingency claims.  Following from there, the model evolved in several branches, summarised 
below.   Designers of military equipment also use a similar concept, where equipment may be fitted 
“for but not with” the capability of being equipped in future with missiles (Dobes, 2010).  ROA is 
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different from traditional financial tools, which generally provide a fixed path for future investment 
decisions. In ROA, options are left open in the future, assuming a gradual resolution of uncertainty, 
making it ideal for assessing large-scale investments in the context of climate change.   The solution 
of real options models is based on different techniques, such as the Black-Scholes formula, Monte-
Carlo path dependent simulations and binomial or multinomial trees (Kontogianni et al. 2014).   

The learning in ROA is based on an uncertain underlying parameter. The uncertain parameters in the 
context of this project will be rainfall and river and aquifer flows. Due to climate change (and 
changes in land use and river basins), hydrological variables will no longer be reliably constant and 
past hydrologic data do not necessarily provide a good indicator of future conditions, i.e. non-
stationarity applies (Milly et al., 2008). In ROA, the uncertainty of the hydrological variable - at least 
with respect to climate change - is assumed to resolve with the passage of time due to increasing 
knowledge. For instance, the confidence in changes of rainfall, extremes and related drought risk 
under climate change will likely increase over time as time series grow longer, as ‘low-data’ methods 
are developed and as model uncertainties in climate and hydrological models are reduced (van der 
Pol et al. 2014). ROA takes advantage of the assumption that the uncertainty is dynamic rather than 
deep and provides strategies that can be adapted in a changing context.  

The ROA method selected depends on the available data, the type of option and the desired 
simplicity (Kontogianni et al., 2014).  In this study we choose the multinomial tree method.  

The majority of ROA studies in the adaptation context apply ROA to an aspect of flood risk 
management, including coastal sea-level rise. The dominance of studies around flooding reflects the 
usually high irreversible fixed cost that makes waiting attractive, and the coastal application lends 
itself to ROA because it involves a uni-directional, bounded and gradual change. Many studies (e.g. 
Abadie et al., 2017, Rosbjerg, 2016) use the approach to determine whether it is optimal to invest 
now or to delay the investment, while others (Woodward et al., 2014, 2011, Gersonius et al. 2013) 
use ROA to determine the value of flexibility within the system, as well as the difference in value 
between waiting and investing now.  These two approaches are sometimes referred to as “on” 
options, which have a timeliness aspect, and “in” options, which have technical engineering and 
design adjustments enabling options within operations. 

Some studies do apply ROA to water storage, either for hydropower (Kim et al., 2017, Steinschneider 
& Brown, 2012) or reservoirs for other uses (Sturm et al., 2017).  Again the analysis is either on or in 
options: Kim et al. (2017a) apply ‘in’ options to look at the optimal sequential expansion of rainwater 
harvesting tanks. 

Kim et al. (2017b) assess the economic benefit of adapting hydropower plants to climate change in 
South Korea.  They assess whether to build a hydropower plant under either RCP 4.5 or RCP 8.5, with 
no uncertainty considered within each RCP. The climate change risk is in the form of the quantity 
and timing of runoff and extreme weather events, including floods and droughts.  They use a similar 
approach as Gersonius et al. (2013) to determine the probability, and for the volatility, a ratio of 
best/worst case.  The best case is created assuming that the energy production and tariff increase to 
maximum, whereas investment and operating and maintenance costs decrease to minimum 
compared with those of the moderate case.  The findings indicate that under RCP 8.5 the investment 
should not go ahead, as the investment cost exceeds the economic payoff.  
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Steinschneider and Brown (2012) apply ROA to compare different adaptation strategies for a 
hydropower facility in the US under a range of possible future climates.  The utility of these 
adaptation strategies are tested with and without the availability of a real option water transfer. The 
first strategy assumes stationary climate conditions will persist into the future and conditions 
reservoir operations on the historic record.  The second strategy optimises operations for the mean 
projections of future climate as simulated by the GCMs.  The third strategy dynamically manages the 
system for short term climate variability using seasonal hydrologic forecasts.  For the third strategy, 
the authors suggest using seasonal hydrologic forecasts in combination with ROA-style hedging 
rather than trying to use long-term projections which are highly uncertain. The real option is the 
possibility to transfer water between the water supply agency and a nearby flood control reservoir 
that is established to augment supply in times when water is over-allocated and shortages are 
imminent.  

The study indicates that seasonal hydrologic forecasts are a promising adaptation to nonstationary 
hydrology, even without the support of a risk hedging option. Surprisingly, the option approach 
enabled even a stationary assumption to perform well in the future, suggesting that option 
instruments alone can act as a robust adaptation mechanism. 

Sturm et al. (2017) apply ROA options to compare the prices of water storage and no water storage. 
They use an option pricing approach, i.e a simplified Black-Scholes formula to evaluate strategic 
decisions, applying it to two examples, one of which is water storage.  They replace the finance 
variables in the formula with climate variables, using the example of the development of water 
storage through a system of rivers, dams and reservoirs for California, and compare the option price 
of storage and no storage ad examine the difference.   

The purpose of applying ROA in the context of climate change is to assist in making decisions when 
there is uncertainty involved. ROA assumes that the uncertainty is dynamic rather than deep and 
while it will not completely resolve over time, the probability distribution will be adjusted in future 
as time series of data grow longer, ‘low-data’ methods are developed and model uncertainties in 
climate and hydrological models are reduced. This agreement on probabilities does mean the 
technique is vulnerable to bias, gridlock and brittle decisions (Kalra et al., 2014), but still provides 
advantages over traditional non-flexible approaches.   

Some large-scale modelling assessments have developed probability-like projections, notably the 
UKCP09 projections (Murphy et al., 2009), however these only sample climate model uncertainty 
(i.e. a probability distribution function (pdf) for each separate emission scenario), rather than a 
single pdf of the overall envelope of difference scenarios and all climate models together.  In this 
study we develop an approach to assign probabilities to a range of climate model and climate 
scenario combinations.  

3. New Zealand climate projections and uncertainty 
Climate change is already affecting New Zealand with downstream effects on the natural 
environment, the economy, and communities. In the coming decades, climate change is highly likely 
to increasingly pose challenges to New Zealanders’ way of life.  
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In general, New Zealand can expect ongoing warming throughout the 21st century, as well as 
changes to extreme temperatures. Extreme warm temperatures and heatwaves are likely to be 
more common in the future, and extreme cold temperatures and frosts are likely to decrease. In 
addition, rainfall patterns may change across the country, with the west and south of New Zealand 
becoming wetter and the north and east of the North Island becoming drier. Some areas may not 
experience much change in total annual rainfall, but the seasonality when rainfall occurs may 
change, i.e. summers may become drier and winters may become wetter (Figure 1). The intensity of 
extreme rainfall is likely to increase in a warmer climate. Winds are also likely to increase across 
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central New Zealand, particularly in winter.

 

Figure 1 : Annual mean rainfall change (in %) between 1995 and 2090, under the highest IPCC 
Representative Concentration Pathway (RCP8.5). 

 

These changes are likely to have significant impacts on the country’s water cycle. This in turn will 
affect the availability of water for irrigation and crop demand for irrigation, and as such affect New 
Zealand’s agricultural systems.   
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Increasing temperatures will impact pasture grass and crop growth, as plant phenological 
development may occur at a faster rate. The pasture growth season may extend into the cooler part 
of the year as the climate warms, and higher concentrations of carbon dioxide in the atmosphere 
means that pasture may grow more vigorously when it is not constrained by temperature or water 
availability.  

Extreme heat affects the rate of evapotranspiration, or the uptake of water by plants. Therefore, 
increases to extreme heat may affect water availability and increase the amount of water needed for 
irrigation, as under hot conditions plants use more water than usual. Extreme heat may also result in 
current varieties of crops and pasture becoming unsustainable if they are not suited to growing in 
hot conditions.  

Reductions in cold conditions may have positive impacts for diversification of new crop and grass 
varieties that are not able to currently be grown in cooler parts of New Zealand. However, future 
warmer temperatures may increase the risk from pests (plants and animals) and diseases. Currently, 
many pests are limited by New Zealand’s relatively cool conditions, so that they cannot survive low 
winter temperatures, and therefore their spread is limited (Kean et al., 2015). Under a warmer 
climate, these pests may not be limited by cold conditions and therefore cause a larger problem for 
farmers and growers in New Zealand. 

Increases in extreme rainfall event magnitudes may impact agriculture and horticulture in several 
different ways. Slips on hill country land may become more prevalent during these events, and soil 
erosion may also be exacerbated by increasing drought conditions followed by heavy rainfall events 
(Basher et al., 2012). This has impacts on the quality of soil, the area of land available for production, 
and other impacts such as sedimentation of waterways (which can impact flooding and water 
quality). Slips may also impact transport infrastructure (e.g. roads, farm tracks) which may in turn 
affect connectivity of farms and orchards to markets. 

3.1. Simplifying complexity 
A degree of simplification, aiming at reducing the complexity of the results, is necessary to convey 
and frame the science appropriately for diverse audiences. Those simplifications can be achieved in 
a number of ways such as: i) conveying the effects in summary qualitative terms rather than 
quantitative; ii) confining the suite of dependent variables reported; ii) choosing to convey spatial or 
temporal averages of summary statistics (e.g. minimum flows to support water allocation process); 
iii) selecting only a subset of GCMs (e.g. choosing GCM that better represent historical observation); 
iv) defining a limited set of scenarios to serve as RCPs (e.g. planning for the worst case scenario); v) 
selecting only a subset of defined scenarios/RCPs; vi) averaging results across the GCMs; or vii) 
combing results across RCPs by treating RCPs probabilistically rather than separately 

Of the simplifications listed above, the most challenging is where RCPs are probabilistically combined 
to represent end-user perception of future emission scenario. RCPs were defined to represent 
plausible and distinct scenarios along a continuum of multi-dimensional possibilities, helping to 
clarify how the climate may be driven in the future. They are based on a number of assumptions and 
simplifications about how society will behave and what technologies will become available. They 
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help to highlight implications of climate change mitigation, but are currently a source of uncertainty 
and complexity to guide adaptation decision making. 

Despite the substantial knowledge encapsulated by the modelling chain used to generate models 
and datasets, due to their nature errors and uncertainties remain and can influence interpretation 
and analysis results. Uncertainties related to climate change fields are discussed in detail in Ministry 
for the Environment (2018).  

3.2. Hydrological uncertainties due to Global Climate Model 
uncertainty 

Multiple GCMs are used in order to encapsulate a plausible range of physical interpretations of the 
climate system given uncertainties in climate science. The IPCC assessment contains an ensemble of 
more than 41 GCMs. NIWA selected 41 to be used in New Zealand, but the number of simulations 
available varied with RCP – only 23 for RCP2.6, but the full 41 for RCP8.5 and this historical period 
ending 2005. Thus among those GCMs, a subset of 23 GCMS was established to be used in New 
Zealand for the four RCPs (Ministry for the Environment 2016). A further subset of six GCMs to be 
used for dynamical downscaling was established representing the wide range of potential climate 
condition across New Zealand for each RCP (Ministry for the Environment, 2018). Each GCM will 
invariably produce a unique and different hydrological outcome. To illustrate the potential variability 
of these outcomes, 
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Figure 2 illustrates the variation across GCMs and RCPs for the change in mean discharge in the 
Waikato river for each individual GCM and RCP as well as the mean and median of GCM results.  For 
the lower three RCPs, the variation among GCMs is greater than the variability among RCPs. 
Differences in the distribution of the GCM results for a given RCP also affect the relative position of 
the GCM mean and median: while the GCM mean increases monotonically across RCPs, the GCM 
median does not. 

The GCM hindcasts are also biased to a degree. This is addressed through the bias correction and 
downscaling described by Sood (2014).  
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Figure 2: Change in mean discharge by end of the century at the outlet of the Waikato River for individual 
GCMs and RCPs, including GCM means and medians.  

 

4. The case study used in this project 
In this study, we focus on the uncertainty relating to future water availability for agriculture in New 
Zealand. Water availability for irrigation, industry and domestic use is currently under considerable 
pressure in NZ, and is likely to increase further with extreme events (droughts) and increased rainfall 
variability under climate change, combined with ever-increasing demand. Increasing requirements 
to leave more water in lowland stream and aquifers for environmental values (Ministry for the 
Environment and Ministry for Primary Industries 2018) means that new thinking is required to bring 
reliability of supply to acceptable levels. Water storage is a potential adaptive measure, harnessing 
rainfall and water fluxes in periods of excess for use when less is available, and improving the 
reliability of supply. Storage facilities are a significant investment however, and standard decision-
making approaches (such as cost-benefit analysis), using a specified climate change scenario in order 
to identify a single optimal adaptive strategy, may lead to sub-optimal decisions.   
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Dittrich et al. (2016) provide advice on the choice of robust approach in different contexts, and 
recommend that ROA is most appropriate for large capital infrastructure investments.  ROA is suited 
for (partly) irreversible investments with long life-times and sensitivity to climate conditions when 
there is a significant chance of over- or underinvesting combined with an opportunity cost to 
waiting, i.e. if there is a need for action in the present.  We will therefore apply ROA for the appraisal 
of water storage, as it meets these criteria.  ROA enables uncertainty to be considered, and explicitly 
places a value on flexibility. If the investment was partially or completely reversible, i.e. no sunk cost 
was incurred, there would be no value in delaying the investment or setting it up with flexibility.  

By applying ROA we will identify how to sequence the construction of the water storage measure or 
scheme so that it is able to provide a reliable future supply of water in a way that minimises the 
expected life-time cost of the system.  

Current guidance for sizing irrigation reservoirs does not consider future climate change in depth. 
For example, Figure 3 from IrrigationNZ illustrates the main factors to be considered when sizing an 
irrigation pond and recommends considering the current local climate, but does not mention 
potential future changes, nor any uncertainty regarding those.  The current National Policy 
Statement on Freshwater Management (New Zealand Government 2014,) requires water resource 
managers to consider the “foreseeable impact of climate change” (pgs.12 and 15) as part of their 
decision-making process. If a resource consent is required for constructing an irrigation reservoir, 
this type of consideration does need to be demonstrated, but there is no specification regarding 
time horizons, different scenarios, or the inclusion of uncertainty.  

 

Figure 3 The main factors to be considered when sizing an irrigation pond (Irrigation NZ 2017) 
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By applying ROA, we will not obtain one strategy but a strategy that can be adjusted over time 
depending on the climate change outcomes observed over time, i.e. extending the capacity of the 
reservoir. Thus, ROA ensures that resources can be used more efficiently by considering a wide 
range of potential outcomes now and determining the best possible strategy for any of these 
contingent scenarios. 

We use a case study to demonstrate the applicability of ROA as a potential investment appraisal tool 
for adaptation to climate.  We focus on water availability in the dairy sector, one of the larger 
consumers of water resources in New Zealand (Rajanayaka et al., 2010), and which has become 
increasingly reliant on water storage over the last two decades.  The case study was chosen based 
on the following criteria: 

 Land cover chosen is dairy dry land to represent the dairy sector; 
 The case study should be located in an area that fits the hydrological model 

assumption (i.e. not located in coastal areas where groundwater could play a major 
role); 

 The case study should be located in an area that is currently experiencing water stress 
to support agricultural activities; 

 The case study should be located in a high productive location where climate changes 
are expected to be relatively consequent and described as follow: 

 Mean summer flow is going to decrease by at least 20% (compared to current 
simulated conditions) across all scenarios; 

 Summer soil moisture deficit has increased by at least 10% by the end of the Century 
under RCP8.5.  
 

As a result, a catchment was identified in the Canterbury area that meets these criteria in 
collaboration with Deep South National Hydrology project team. The catchment is located at nzreach 
id 13055784 (branch of Rangitata), approximately 40  km north-west of Hinds in mid-Canterbury 
(Figure 4). We stress however, that beyond the selection of the location, all of the other assumptions 
are purely hypothetical, i.e. this analysis is not being carried out for an investment decision in reality. 
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Figure 4: Case study location (black outline polygon). Topographic information provided by green 
background. 
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5. Data and Methods 
In this section we describe the methodology used to carry out the ROA. Before the ROA itself can be 
carried out, the hydrological analysis must first be conducted. We describe the data and methods 
used for that first, before moving on to describe the ROA method.  

5.1. Climate modelling 
Assessing the potential adaptation pathway over the 21st century for primary industry in the face of 
impacts of climate change can be carried out using continuous hydrological modelling driven by 
climate change projections from a suite of models associated with economic assessment provided by 
ROA.  The data, models and methods are described below. 

The primary input for the hydrological and economic assessments is climate data generated from a 
suite of Regional Climate Model (RCM) simulations with sea surface forcing taken from Global 
Climate Models (GCMs). These coupled climate models are driven by natural climate forcing such as 
solar irradiance and historical and modelled anthropogenic forcing driven by emissions of 
greenhouse gases and aerosols based on 4 Representative Concentration Pathways (RCPs), but are 
otherwise free-running in that they are not constrained by historical climate observations applying 
data assimilation. As part of the fifth IPCC assessment report (AR5) (IPCC 2014), NIWA assessed up to 
41 GCMs from the AR5 model archive for their suitability for the New Zealand region. Validation of 
those GCMs was carried out through comparison with large scale climatic and circulation 
characteristics across 62 metrics (Ministry for the Environment 2018). This analysis provided 
performance-based ranking based on New Zealand’s historical climate. The GCMs were then used by 
NIWA to drive statistically based regional climate simulations for performing change impact 
assessments across New Zealand. The six best performing independent models, where projections 
across all four RCPs were available (van Vuuren et al. 2011), were selected for dynamical 
downscaling; that is, sea surface temperatures (SST) and sea ice concentrations from the six models 
are used to drive an atmosphere-only global circulation model, which in turn drives a higher 
resolution Regional Climate Model (RCM) over New Zealand. The output data fields are bias-
corrected relative to a 1980-1999 climatology and subsequently further downscaled to an 
approximate 5 km grid (Sood 2014). The RCM output (bias-corrected and downscaled to 5 km) is 
then provided as input to a hydrological model which produces soil moisture and river flow. 

The NIWA dynamical procedure involves a free-running atmospheric GCM (AGCM) (i.e., not 
constrained by historical observations), in this case HadAM3P (Anagnostopoulou et al. 2008), forced 
by SST and sea ice fields from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models 
(Ackerley et al. 2012). Due to the nature of the climate runs for each GCM, year-to-year variability in 
the models does not correspond with observed variability. As such they are a deterministic 
consequence of the initial conditions and the solar and anthropogenic drivers. Further details on the 
validation of the six GCMs can be found in Sood (2014) and Ministry for the Environment (2018).  
Model and parameter uncertainty are discussed in the Uncertainties and limitation section. 

The downscaled climate data used here run from 1971 to 2100. From 2005 onward, as per IPCC 
recommendations, each GCM is in turn driven by four RCPs that encapsulate alternative scenarios of 
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radiative forcing and reflect alternative trajectories of global societal behaviour with regard to 
greenhouse gas emissions and other activities. The range of RCPs used can help shed light on the 
utility of climate change mitigation. Descriptions and trajectories of the four RCPs are provided in 
Table 1 and Figure 5. By mid-century, the temperature trajectory of RCP2.6 is the coolest and RCP8.5 
the warmest, with RCP4.5 and RCP6.0 producing intermediate warming. While RCP6.0 ends the 
century with more forcing than RCP4.5, early and mid-century it is RCP4.5 that has higher 
greenhouse gas emissions and a stronger radiative forcing; this is somewhat reflected by the mid-
century temperature change ranges for the New Zealand seven-station network (Table 1). RCP6.0 
overtakes RCP4.5 after the middle of century. The climatic and hydrological effects of the RCPs are 
not simply a linear or monotonic progression from the lowest to highest RCP. Furthermore, the 
spatial patterns of climatic change across New Zealand are different from RCP to RCP. 

Table 1: Descriptions of the Representative Concentration Pathways (RCPs). Temperature changes 
are the GCM mean (°C) and, in brackets, the likely ranges. 

Representative 
Concentration 
Pathway 

Description Seven-station temperature 
change (Ministry for the 
Environment 2016) 

Global surface 
temperature change 
for 2081-2100 (IPCC 
2014, Table 2.1) 

  2031-2050 2081-2100  

RCP2.6 The least change 
in radiative 
forcing 
considered, by 
the end of the 
century, with +2.6 
W/m2 by 2100 
relative to pre-
industrial levels. 

0.7 (0.2, 1.3) 0.7 (0.1, 
1.4) 

1.0 (0.3, 1.7) 

RCP4.5 Low-to-moderate 
change in 
radiative forcing 
by the end of the 
century, with +4.5 
W/m2 by 2100 
relative to pre-
industrial levels 

0.8 (0.4, 1.3) 

 

1.4 (0.7, 
2.2) 

 

1.8 (1.1, 2.6) 

 

RCP6.0 Moderate-to-high 
change in 
radiative forcing 
by the end of the 

0.8 (0.3, 1.1) 

 

1.8 (1.0, 
2.8) 

 

2.2 (1.4, 3.1) 
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century, with +6.0 
W/m2 by 2100 
relative to pre-
industrial levels. 

RCP8.5 The largest 
change in 
radiative forcing 
considered, by 
the end of the 
century, with +8.5 
W/m2 by 2100 
relative to pre-
industrial levels. 

1.0 (0.5, 1.7) 

 

3.0 (2.0, 
4.6) 

 

3.7 (2.6, 4.8) 

 

 

 

Figure 5: Bias-adjusted SSTs, averaged over the RCM domain, for 6 CMIP5 global climate models (2006-
2120), the historical simulations (1960-2005), and four future simulations (RCPs 2.6, 4.5, 6.0 and 8.5), 
relative to 1986-2005 (Sood 2015).  Individual models are shown by thin dotted or dashed or solid lines (as 
described in the inset legend), and the 6-model ensemble-average by thicker solid lines, all of which are 
coloured according to the RCP pathway. 
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5.2. Hydrological modelling 
In order to assess the potential impacts of climate change on agricultural water resource, a 
hydrological model is required that can simulate soil moisture and river flows continuously and 
under a range of different climatic conditions, both historical and future. Ideally the model would 
also simulate complex groundwater fluxes but there is no national hydrological model capable of this 
at present. Because climate change implies that environmental conditions are shifting from what has 
been observed historically, it is advantageous to use a physically based hydrological model over one 
that is more empirical, with the assumption that a better representation of the biophysical processes 
will allow the model to perform better outside the range of conditions under which it is calibrated.  

The hydrological model used in this study is TopNet (Clark et al. 2008), which is routinely used for 
surface water hydrological modelling applications in New Zealand. It is a spatially semi-distributed, 
time-stepping model of water balance. It is driven by time-series of precipitation and temperature, 
and of additional weather elements where available. TopNet simulates water storage in the 
snowpack, plant canopy, rooting zone, shallow subsurface, lakes and rivers. It produces time-series 
of modelled river flow (without consideration of water abstraction, impoundments or discharges) 
throughout the modelled river network, as well as evapotranspiration, and does not consider 
irrigation. TopNet has two major components, namely a basin module and a flow routing module.  

The model combines TOPMODEL hydrological model concepts (Beven et al. 1995) with a kinematic 
wave channel routing algorithm (Goring 1994) and a simple temperature based empirical snow 
model (Clark et al. 2008). As a result, TopNet can be applied across a range of temporal and spatial 
scales over large watersheds using smaller sub-basins as model elements (Ibbitt and Woods 2002; 
Bandaragoda et al. 2004). Considerable effort has been made during the development of TopNet to 
ensure that the model has a strong physical basis and that the dominant rainfall-runoff dynamics are 
adequately represented in the model (McMillan et al. 2010). TopNet model equations and 
information requirements are provided by Clark et al. (2008) and McMillan et al. (2013).  

For the development of the National TopNet used in this application, spatial information in TopNet is 
provided by national datasets as follows: 

 Catchment topography based on a nationally available 30 m Digital Elevation Model 
(DEM); 

 Physiographical dataset based on the Land Cover Database version two and Land 
Resource Inventory (Newsome et al. 2000); 

 Soil dataset based on the Fundamental Soil Layer information (Newsome et al. 2000); 
and 

 Hydrological properties (based on the concept of River Environment Classification 
version one- REC1 (Snelder and Biggs 2002).  
 

The method for deriving TopNet’s parameters based on GIS data sources in New Zealand is given in 
Table 1 of Clark et al. (2008). Due to the paucity of some spatial information at national/regional 
scales, some soil parameters are set uniformly across New Zealand. Because of the model 
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assumptions soil and land use characteristics within each computational sub-catchment are 
homogenised. This results in soil characteristics and physical properties of different land uses, such 
as pasture and forest, to be spatially averaged, and the hydrological model outputs will be an 
approximation of conditions across agricultural land uses.   

Hydrological simulations are generated over the period 1971 to 2100, with the spin-up period 1971 
excluded from any subsequent the analysis. The climate inputs are stochastically disaggregated from 
daily to hourly time steps for model requirements. Hydrological simulations are based on the REC 
version 1 network aggregated up to Strahler1 catchment order three (approximate average 
catchment area of 6 km2) to reduce simulation times and data sizes to manageable levels while still 
providing useful information; residual coastal catchments of smaller stream orders remain included. 
The simulation results comprise hourly time-series of various hydrological variables for each 
computational sub-catchment, and for each of the six GCMs and four RCPs considered.  

NIWA, in collaboration with Aqualinc, refined the national scale analysis of climate change impacts 
on water availability (Collins and Zammit 2016), by considering the effects of climate change alone 
on irrigation demand, and by considering when effects may become discernible from or significantly 
different to current climate variability (Collins et al 2019). This was carried out by coupling previous 
simulations with an irrigation water demand model, IrriCalc (Allen et al. 1998). The assessment 
focussed on areas that are currently under irrigation and for simplicity assumed that land use stays 
fixed. 

As a result of climate change, mean river flows during the irrigation season are projected to increase 
across many but not all irrigated areas in the South Island with Southland and parts of Central Otago 
showing the first substantial signs by mid-century (2039-2049). Irrigation water demand is projected 
to increase across most of New Zealand, with effects emerging by mid-century in the North Island 
and later (2080-2099) in the South Island. 

From a water management aspect, irrigation restrictions are expected to occur earlier in the year, 
mostly for the North Island, but only after the middle of the century and largely only for the extreme 
warming scenario. At the same time, irrigation restrictions are expected to stop earlier during the 
water year, although the shifts are neither as widespread nor as large as with the change on the 
onsets of irrigation restrictions. This shift in the onset and offset of the irrigation restrictions results 
in a minimal change in the duration of the irrigations restrictions, but the frequency of irrigation 
restrictions tends to increase over the course of the century with the North Island and northern 
South Island irrigated areas hardest hit. 

Reliability of river water supply (the average fraction of time during each irrigation season that the 
river flow is too low and thus irrigation is restricted) tends to decline during the century but largely 
only by late-century and for the extreme climate change scenario (Figure 6). 

 

 
1 Strahler order describes river size based on tributary hierarchy. Headwater streams with no tributaries are order 1; 2nd order streams 
develop at the confluence of two 1st order tributaries; stream order increases by 1 where two tributaries of the same order converge. 
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Figure 6: Mid- and late-century changes in river reliability of supply (Collins et al. 2019). 

 

5.3. Water demand, water availability and reliability of supply 
5.3.1 Water demand and availability 
A hypothetical dairy farm of 200 ha in size was used to determine the water demands for this study. 
It was assumed that irrigation season spans from September to April. Irrigation water is applied at 
90% efficiency to meet the soil-moisture deficit, when water is available. A stock rate of 4 cows/ha 
was used with an average daily water demand of 70 litres/day/cow for stock water and dairy shed 
cleaning, washing and milk cooling (Stewart and Rout, 2007).  We assume that the current stocking 
rate and production will continue into the future. 

Given that the study area is located within the Canterbury region, Environment Canterbury 
allocation rules were used to determine the available water for irrigation and associated activities. 
Canterbury Land and Water Regional Plan (ECan, 2017) Rule 5.123.2 states that: 

Unless the proposed take is the replacement of a lawfully established take affected by the provisions 
of section 124-124C of the RMA, if no limits are set in Sections 6 to 15 for that surface waterbody, the 
take, both singularly and in addition to all existing consented takes meets a flow regime with a 
minimum flow of 50% of the 7-day mean annual low flow (7DMALF) as calculated by the CRC and an 
allocation limit of 20% of the 7DMALF. 

Based on the above rule, the minimum flow and primary run-of-river allocation for the stream are 
16.6 and 6.7 litres/sec, respectively. It is also assumed that further high stream flows between the 
median flow and three times the median flow is available for harvesting and storing in a reservoir. 

5.3.2 Reliability of supply and reservoir sizing 
Four key factors are generally considered to quantify the reliability of supply-demand (Robb and 
McIndoe, 2001). These are: 

1. Severity – size or amount of restriction; 

2. Frequency – how often the restrictions occur; 

3. Duration – how long the restrictions last; and 

4. Timing – when restrictions occur. 

On any day during the irrigation season, the supply of available water from the storage can be 
compared with the demand for irrigation. If water supply from the storage equals or exceeds 
demand, reliability is 100%. If demand exceeds water supply, reliability is calculated by dividing 
supply by demand to give a supply/demand ratio. The daily ratios can be combined into weekly, 
monthly, seasonal (spring, summer, autumn), irrigation season or annual figures.  

In general, it is neither economically attractive nor is sufficient water available to develop a large 
storage to meet high level of reliability (e.g. >95%) when water is sourced from a small stream. 
Therefore, the capacity of the storage has been designed to meet average annual supply/demand 



 
 

 

 

DEEP SOUTH CHALLENGE: CHANGING WITH OUR CLIMATE 
 

 | 27 

 

 

 

 

ratio of 80%. The unmet demand needs to be met with alternative supplies such as supplementary 
feed. 

5.4. The ROA  
We begin by providing an overview of the ROA process and the necessary steps, and describe the 
relevant methods within each of these.  

The ROA decision problem for a multinomial decision-tree method is structured based on the 
following steps, following Gersonius et al. (2013) and Dittrich et al. (2019):  

1. Specify the decision tree 

2. Identify the potential options 

3. Formulate the optimisation objective 

4. Solve the optimisation problem 

5.4.1. Specify the decision-tree 

The decision problem can be illustrated in a decision-tree, where the branches represent potential 
pathways of available water under the different RCP/GCM combinations.  The nodes describe the 
water storage sizes constructed, depending on the different water availability outcomes.  

For this study we specify a decision tree with two decision-points (2018 and 2050), with four 
potential outcomes between 2018 and 2050 and for each of these, a further four potential outcomes 
by 2090, when we conclude the analysis.  Depending on the type of decision to be made and the 
context, more decision points could be selected, but this would increase the complexity. Thus for the 
present study we construct a decision-tree with 256 (44) branches. 

5.4.2. Determine the probabilities of each branch 

Determining the different branches of the decision-tree is one of the major parts of the ROA 
methodology, and one of the most challenging and contested in the context of climate change (Kalra 
et al. 2014).  Most studies make simplifying assumptions that avoid making assumptions regarding 
the likelihood of different climate scenarios. Several studies (Abadie et al., 2017; Gersonius et al., 
2013) assume the different climate scenarios are equally likely.   Jeuland and Whittington (2014) do 
not assign probabilistic weights to the respective scenarios, but transform indicators into relative 
measures of downside, expected, and upside performance, but they go on to use Robust Decision 
Making (a different approach) to compare across scenarios.  Kim et al. (2014) calculate the 
probabilities through the standard deviation which are influenced by the percentiles of the rainfall 
distribution.  However the formula for the volatility assumes that the changes in climate are 
normally distributed.  Kim et al. (2017) use two RCPs independently, both of which were considered 
certain.  This does not provide information for considering the likelihood of each RCP.  In a very 
different approach, Sanderson et al. (2016) use historical climate data from another location as an 
analogue for how the climate may become in the case study location.   
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In this study, the combination of RCPs and GCMs provides a 24-members ensemble of potential 
futures.  To help inform decision-makers concerned with adaptation, it is necessary to define a 
conceptual approach that summarises the range of projections in a simpler framework outlining the 
range of plausible pathways a key decision variable (in this case water availability) may take. The 
term pathway is used to describe the evolution of a single variable over time (i.e. trajectory), not the 
propagation of information along a causal chain. This procedure enables probabilities to be assigned 
explicitly using “perceived” probabilities to both GCMs and RCPs.  

The framework is illustrated hereafter using a probabilistic approach based on the following 
assumptions: 

 No assessments have been made on the relative plausibility of the six GCMs used thus 
far for climate change projections in the New Zealand region, and so in the absence of 
more specific information we treat each as being equiprobable. 

 The relative plausibility or the RCPs, however, are not as unknown. The two end-
member RCPs (2.6 and 8.5) are both considered less likely than the two middle range 
RCPs (4.5 and 6.0) (see Table 2). 
 

To simplify the application of the framework, while providing enough granulometry for future 
decision makers, we collapse the potential 26 futures into 4 states, which correspond to a discrete, 
non-overlapping range of simulated hydrological conditions encountered over the time period 
considered. For simplicity, the full range of future hydrological conditions is divided in four equal 
bins, representing the maximum size of the reservoir needed to meet the water demand over the 
time period for the reliability of supply chosen.   

Table 2: Two scenarios of relative perceived probabilities for the four RCPs 

RCP Equiprobable Non-
equiprobable 

2.6 0.25 0.15 

4.5 0.25 0.35 

6.0 0.25 0.35 

8.5 0.25 0.15 

 

5.4.3. Identify the potential options 

In this context of this case study, flexibility comes from the size and potential expansion of the 
reservoir depending on the future climate. The reservoir sizes in the different time periods are 
presented in Table 3. 
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Table 3 - Probabilities and storage sizes for each of the quartile bins, in 2050 and 2090 

2050 2090 
    probability       probability   

GCM/RCP   Equi 
Non-
equi 

Average 
storage 
size (m3) GCM/RCP   Equi 

Non-
equi 

Average 
storage 
size (m3) 

GCM1RCP3 

Bin 1 0.45833 0.408
33 59875 

GCM3RCP3 

Bin 1 0.4817 0.541
7 173500 

GCM3RCP4 GCM6RCP1 
GCM2RCP3 GCM3RCP4 
GCM4RCP3 GCM2RCP3 
GCM5RCP4 GCM5RCP1 
GCM4RCP1 GCM4RCP4 
GCM3RCP3 GCM3RCP1 
GCM3RCP1 GCM1RCP3 
GCM1RCP1 GCM1RCP1 
GCM5RCP1 GCM2RCP1 
GCM1RCP4 GCM3RCP2 
GCM5RCP3 

Bin 2 0.25 0.316
667 117250 

GCM5RCP4 
GCM6RCP2 GCM4RCP3 
GCM4RCP4 GCM1RCP2 

Bin 2 0.225 0.208
3 340000 

GCM1RCP2 GCM6RCP3 
GCM3RCP2 GCM6RCP4 
GCM2RCP2 GCM1RCP4 
GCM6RCP4 

Bin 3 0.20833 0.191
667 174625 

GCM5RCP3 
GCM5RCP2 GCM6RCP2 

Bin 3 0.1417 0.125 506500 GCM2RCP1 GCM2RCP2 
GCM6RCP3 GCM4RCP1 
GCM2RCP4 GCM2RCP4 

Bin 4 0.1417 0.125 673000 GCM6RCP1 
Bin 4 0.08333 0.083

33 232000 
GCM5RCP2 

GCM4RCP2 GCM4RCP2 
 

5.4.4. Formulate the optimisation objective 

The next step is to formulate the optimisation objective, which is to maximise the net present value 
of the storage investment: 

                                                                          

𝐶𝐶 = max
𝑍𝑍𝑡𝑡

∑ 𝐵𝐵(𝑋𝑋𝑡𝑡 )−𝐼𝐼(𝑋𝑋𝑡𝑡
(1+𝛿𝛿)𝑦𝑦𝑡𝑡−𝑦𝑦1

𝑌𝑌𝑡𝑡
𝑦𝑦1=1                                                                                                                               (1) 
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Where 

C = Net present value of the total investment 

𝐼𝐼(𝑍𝑍𝑡𝑡) = Investment costs 

𝐵𝐵(𝑋𝑋𝑡𝑡 ) = Value of the benefits 

𝛿𝛿  = Discount rate 

𝑍𝑍𝑡𝑡  = Decision variable (e.g investment in additional storage capacity at the decision nodes) 

𝑋𝑋𝑡𝑡 = Stock variable (i.e. the total storage capacity at year t) 

Damage occurs if the water storage constructed is insufficient to meet the needs of the farm in that 
time period.  Additional investment 𝑍𝑍𝑡𝑡  is realised by expanding the size of the reservoir at two 
decision points, at time = 1 and 2 (corresponding to 2018 and 50), i.e 

𝑋𝑋𝑡𝑡 =  𝑋𝑋𝑡𝑡−1 + 𝑍𝑍𝑡𝑡                                                                                    (2) 

To maintain production, the storage capacity needs to be above α 

𝑞𝑞𝑡𝑡𝑡𝑡 (𝑋𝑋𝑡𝑡−1 + 𝑍𝑍𝑡𝑡) ≥∝                                                                                      (3) 

 

Where α has been identified from the hydrological analysis and 𝑞𝑞𝑡𝑡𝑡𝑡 is an estimate of the probability 
associated with 80% reliability of supply at time t based on a particular climate, u.  

Cost calculations 

The cost values used in this study were obtained from personal communication with an irrigation 
reservoir contractor based in Christchurch.   

The investment costs of constructing a reservoir consist of the one-off construction costs (design, 
labour and materials).  For the purposes of this study we assume construction costs are between  $3 
– $6/m3 and conduct sensitivity analyses around these (Densem, pers comm). 

Other potential costs not included here include the cost of consent and potentially geotechnical 
investigations that may be required in reality. There are also likely to be annual maintenance costs, 
and potentially energy costs involved in pumping the irrigation water, if it is not a gravity based 
system.  There is also the opportunity cost of the land, depending on the footprint of the dam, which 
we have not included in this analysis. More detailed analysis in future could explore the implications 
of these fuller costs.  

We assume that extending an existing dam will add 35% onto the cost of construction (Densem, pers 
comm). 

For some types of constructions, future extension would require different (and probably more 
costly) initial construction to keep the options open for future expansion. In the case of this type of 
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water storage, there is no difference in the construction in the first time period, although there 
would need to be sufficient surrounding land available to extend into.  

Benefit calculations 

The benefits of water storage in this example are the avoided production losses that would have 
occurred if no water was available (i.e. the avoided damage).  

The relationship between water availability and production is complex with several contributing 
factors, and an entire research project could be devoted to understanding this in more detail. For 
the purposes of this project however, we make a number of simplifying assumptions in order to 
develop a relationship between water availability and dairy production.  

Tait et al. (2005) find that a one standard deviation in soil moisture deficit (SMD) translates to a 3-5% 
change in milkfat production per cow.  We used the mean monthly SMD for the historical period of 
1986-2005 as a base from which to determine the projected standard deviation.  

Monthly milkfat production data for the Canterbury region for 2018/19 (LIC and DairyNZ 2018) was 
used, and we assumed no production in May – July. 

Using the relationship of 1Std dev = 4% reduction in Milkfat, we calculated monthly milkfat 
production over time resulting from the change in SMD. We added these to get the annual value and 
multiplied this by the herd size and milkfat price.  We used a base price of $6/kg, and assumed it 
remains constant into the future, but use a range of milkfat prices to determine the sensitivity ($5-
$7/kg).   

The difference between these future annual milkfat prices and the base 2018/19 value was used to 
determine the value of the water storage. Without sufficient storage, SMD would increase, resulting 
in pasture and therefore production losses.  An alternative method would be to keep production 
constant but assume the shortfall in pasture required the purchase of supplementary feed. The 
benefit would be the avoided feed costs.   

The key parameters for the base case are summarised in Table 4 

Table 4 Key parameters in case study 

Parameter Value 

Construction cost $3/m3 

Milk price $6/l 

Discount rate 6% 

Herd size  800 cows 
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5.4.5. Solve the optimisation problem 

Following Dittrich et al. (2019) we solve this optimisation problem in a spreadsheet using backward 
induction, beginning with the last decision to be made and working progressively back in time to the 
present.  

In order to apply the backward induction, we first need to calculate the net present value for all 256 
paths as if they were going to be implemented. Figure 7 shows part of the decision tree to illustrate 
this initial step. If path 1, (dotted line), eventuated, sufficient storage would be constructed in 2018 
(investment decision I1a) to maintain production under changing water availability in the climate 
model and scenario combinations captured in bin A (25th quartile of the distribution) in 2050.  
Getting to 2050, the water availability turns out to correspond to bin A (outcome O1a), so no further 
storage is necessary to correct for a wrong decision in 2018 (I1=O1), and no damage cost has 
incurred.  Instead, the reservoir is extended to continue to maintain production in 2090 
corresponding to bin A (25th quartile) in 2090 (I2a). In 2090, this choice turns out to be correct (O2a), 
and no further expansion is necessary (I2=O2). The net cost of path 1 (P1 cost in Figure 7) will 
therefore be the discounted cost of the reservoir construction I1 + I2.  The net cost of path 2 (P2 in 
Figure 7) is identical to path 1 with the difference that in 2090, the water requirements correspond 
to Bin B (50th quartile) (O2≠I2). This means two things; (1) that additional storage capacity will be 
required in 2090 to make up the difference between the capacity in 2050 and the actual storage 
capacity need in 2090 to prevent lost production, and (2), damage (lost production) from the lack of 
water occurs and causes additional cost.  

In a second step, we carry out the backward induction. Backward, as it begins with the analysis of 
the last decision to be made and works from there to the original water storage investment decision. 
Our last (and in this case the second) decision relates to the investment made in 2050 anticipatorily 
adapting to possible outcomes in 2090. This step informs us which investment to make at I2 
depending on the state we reach in 2050. By 2050, we will have constructed a reservoir for one of 
the four quartiles and one of the four possible outcomes of the changing water availability (the 25th, 
50th, 75th or 100th quartile) will have been realised. This implies 16 possible states in 2050. We now 
have the choice of creating additional capacity I2 which corresponds to the 25th, 50th, 75th or 100th 
quartiles of the water requirements associated with the changing climate in 2090. For example, as 
illustrated in Figure 7, if we had constructed the reservoir for the capacity of the 25th quartile in 2018 
and the water availability associated with the 25th quartile were actually realised in 2050, we can 
make the investments I2a (25th quartile),….I2d (100th quartile) in a next step. The outcomes O2a (25th 
quartile),…O2d(100th quartile) might occur in 2090 with the probabilities PAA2090, PAB2090, PAC2090 and 
PAD2090 respectively)(A refers to the water outcomes in the 25th percentile, B for the 50th percentile 
etc). Therefore, the expected cost for reservoir construction for the 25th percentile of the water 
availability in 2090 equals PAA 2090P1+PAB2090P2+PAC 2090P3 + PAD2090P4. P1 to P4 represent the total net 
cost of each path calculated in step 1. This process is carried out for the three other states in 2040 
(50th, 75th or 100th quartile) to decide on I2. The quartile with the lowest expected cost will always be 
selected. The same procedure of obtaining the lowest net cost is carried out for the investment 
decision I1 in 2018. In other words, we find the lowest net cost by multiplying the probabilities 
PAA2050….Pi with the respective lowest outcome for I2 and comparing them for each quartile.  
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Figure 7 Illustration of backward induction for the decision problem (Branch A, one of four branches of the 
full decision tree) 

 

6. Results 
The hydrological modelling developed estimates of storage water requirements (assuming 80% 
reliability) from 2018 – 2049, and from 2050 – 2090, for all of the GCM/RCP combinations (Figure 8 
and Figure 9). These are used as the inputs into the ROA, using the methods described in the 
previous section.  
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Figure 8 Storage water requirements (m3) for 80% reliability, 2018-2049 

 

Figure 9 Storage water requirements (m3) for 80% reliability, 2050 - 2090 
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Initially only investment I1 is implemented in 2018.  Subsequently, expansion to the reservoir can be 
implemented in 2050, determined by the climate outcome of the first time period. Thus, the optimal 
investment decision today is influenced by the possibility of the decision-maker to adjust their 
decision at a future point in time based on the changing future water availability.  For example, if 
water availability decreases in future more than what had originally been expected, the size of the 
reservoir can be increased in the most cost-effective way.  The adjustment in 2050 cannot undo the 
cost of lost production (or increased costs) in the past, but it will seek to avoid those costs into the 
future.  On the other hand, if water availability did not decrease significantly over time, valuable 
resources were saved by not constructing an unnecessarily large reservoir.  

The suggested strategies under both the equi-probable and non-uniform RCP probabilities are 
presented in Table 5, and a selection of other scenarios varying parameters such as discount rate, 
milk price and construction cost. The reservoir size zt corresponds to the quartiles of GCM/RCP 
combinations of water availability distribution in 2018 and 2050. In the base case of this example, 
assuming all RCPs are equi-probable, the initial decision would be to construct a reservoir for what 
corresponds to the 25th quartile of the water availability GCM/RCP combinations in 2018 (59 873m3), 
the smallest of the reservoir sizes. The reservoir size decision in 2050 depends on the climate 
outcome in 2050, i.e. how much water storage is required to maintain production in a changing 
climate – which GCM/RCP combinations have been observed over time by 2050.  The second 
decision in this example will be to choose the 25th percentile, the smallest increase in storage size. 
For the other possible outcomes in this case, the most cost effective choice is to build for the 25th 
percentile in 2050.  However, when we consider the distributed probability scenario, where RCPs 2.6 
and 8.5 are assumed less likely to occur, the decision changes. In this case, the correct decision in 
2018 is to build for the 50th percentile in 2018, and the 25th in 2050.  

In the second scenario, we use a discount rate of 3% (consistent with public sector discount rates in 
the United Kingdom for example) as a comparison. For both the equi-probable and distributed 
probability scenarios, the correct decision in 2018 is to build for the 75th percentile (i.e. a larger 
investment is more cost-effective with a lower discount rate). For the decisions in 2050, the correct 
decision is to choose to build for the 25th percentile (the smallest additional storage).  

In the third and fourth scenarios, we increase and decrease the milkfat price respectively. An 
increase in milkfat price by $1/kg implies that the initial storage size should be for the 50th percentile 
in both probability assumptions, and the 25th percentile in 2050. For the lower milk price, the correct 
decision is now to construct the smallest reservoir in 2018 and make the smallest expansion in 2050.  

The final scenario uses a higher per metre construction cost ($4/m3). In this case, for both the equi-
probable and distributed probabilities, the correct decision is to build for the 25th percentile in 2018 
and again in 2050.  

We compare the expected NPV of the most cost effective pathway with the NPV of constructing a 
reservoir for the worst case in both time periods (i.e. the 100th percentile in 2018 and again in 2050).  
This illustrates the economic benefits of conducting an ROA, which allows the most cost-effective 
strategy to be identified.  
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Table 5 Results – showing the most cost-effective strategies in terms of construction for a particular climate outcome percentile at the two time periods, 2018 and 
2050. “Strategy” refers to the most cost-effective strategy at that decision point, and “Outcome” refers to the possible outcomes in 2050 from the preferred strategy in 
2018.  

    1) base case    2) 3% DR   3) $7 milk price   4) $5 milk price   5) $4 constr. cost 
Decision point  equi non-equi  equi non-equi  equi non-equi  equi non-equi  equi non-equi 
   strategy   strategy   strategy   strategy   strategy   
2018  25th 50th  75th 75th  50th 50th  25th 25th  25th 25th 
                  
2050  Strategy Strategy  Strategy Strategy  Strategy Strategy  Strategy Strategy  Strategy Strategy 
Outcome 25th 25th 25th  25th 25th  25th 25th  25th 25th  25th 25th 
  50th 25th 25th  25th 25th  25th 25th  25th 25th  25th 25th 
  75th 25th 25th  25th 25th  25th 25th  25th 25th  25th 25th 
  100th 25th 25th  25th 25th  25th 25th  25th 25th  25th 25th 
                  
Expected NPV   $171,481 $83,676  $159,425 $147,745  $143,824 $121,814  $124,705 $104,384  $135,310 $113,926 

Expected NPV of 
building for worst 
case scenario   -$8,997 -$6,617   $17,259 $19,371   -$442 $1,202   -$17,552 -$14,437   -$29,106 -$24,462 

 



 
 

 

 

DEEP SOUTH CHALLENGE: CHANGING WITH OUR CLIMATE 
 

 | 37 

 

 

 

 

 

7. Discussion 
The analysis in general highlights the trade-offs involved between the costs associated with 
investing in a reliable water supply and the benefits provided. In some cases it will be more 
cost-effective to accept the losses in production in some years rather than building a large 
structure that will provide reliable water (at 80% reliability) in every year, but be very costly. In 
this section we discuss some of the specific implications of the results, and then discuss 
limitations and scope to develop the research further. 

 Choice of probability distribution 
 

The results illustrate that the assumptions made regarding the likelihood of future climates do 
make a difference to decision-making. In the base case, the choice of initial storage size 
changes from when we assume the RCPs are equi-probable (25th percentile) to when we 
assume that RCPs 2.6 and 8.5 are less likely. When the probabilities are distributed, the 
decision would be to construct the larger reservoir in 2018 (50th percentile). This is possibly 
due to the fact that the climate evolves differently over the course of the century under the 
different RCPs, with the impacts peaking earlier in the two central RCPs and then declining, 
meaning more water is required mid-century than later, while under RCP 8.5 the impacts 
increase over the course of the century. In both scenarios, the second decision is to extend for 
the 25th percentile in 2050, to ensure sufficient water availability out to 2090.   

Although the other scenarios do not result in different pathways between the equi-probable 
and distributed probability scenarios, the differences in the base case do highlight the very real 
implications that assumptions regarding the likelihood of future changes have on decisions 
today.  While ROA is an improvement on approaches such as cost-benefit analysis, which 
usually only consider one climate scenario, these differences emphasise the challenges of the 
need to “agree on assumptions” (Kalra et al. 2014).  Given more recent evidence regarding our 
current climate trajectories, further analysis could examine the impact of assuming a lower 
likelihood in the two lower RCPs and a higher likelihood of RCPs 6.0 and 8.5.   

 

 Choice of discount rate 
Choosing a lower discount rate results in building for the 75th percentile in 2018, the largest 
size of all the scenarios considered here. In this scenario, the lower discount rate results in the 
benefits of having sufficient storage in the period between 2018 and 2050 justifying the larger 
construction. In 2050 however, the decision for all outcomes is still to build for the 25th 
percentile. This result demonstrates the importance of the choice of discount rate, with very 
real implications for investment decisions.  For public sector projects with real public good 
benefits, there is a strong argument in favour of a lower discount rate, or one that declines 
over time (Stern 2007).  For this type of project however, which generates primarily private 
benefits, remaining with the six percent rate is justified.  
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 Milk price 
The base case assumes a constant milk price of $6/kg milkfat.  In order to test the sensitivity of 
the results to this assumption, we also examined the effect of a $5/kg and $7/kg price (all held 
constant for the duration of the analysis).  As might be expected, a higher milk price changes 
the choice of storage size in 2018 from the 25th percentile to the 50th percentile assuming equi-
probable RCPs. Under the distributed probability assumption, the higher milk price does not 
change the decision in 2018 (which was also for the 50th percentile at the $6/kg milk price). 
The subsequent decisions are all for the 25th percentile though, as in the base case.  

Lowering the milk price to $5/kg means that only the smallest storage size is chosen in 2018 
and the smallest again in 2050, under both assumptions about likelihood. At this lower price a 
larger investment is not justified. The expected NPV is still positive though, demonstrating the 
benefits of water storage in this example.  

For this application, in all of the scenarios, the correct choice in 2050 is to build for the 25th 
percentile, the smallest extension. Although there will be years in which the storage is not 
sufficient, the costs of lost production are not sufficient to justify the cost of larger storage.  In 
other applications, whether different locations for water storage or different types of 
investments altogether, each pathway and decision point will be different.  

Table 5 also shows the expected NPV for building water storage for the worst climate outcome 
in each of the scenarios, as a comparison with the most cost-effective. Most of these have 
negative expected NPVs, indicating the costs outweigh the benefits, but the scenarios with the 
lower discount rate do generate positive NPVs even with these larger sized reservoirs. The 
higher milk price and distributed probability scenario also generates a positive expected NPV.  
While these may be cost-effective investments under those assumptions, they are not the 
most cost-effective, and do not generate the maximum NPV. 

7.1. Limitations and further work 
The intention of this project was to demonstrate how ROA can help with large investment 
decisions under climate change in New Zealand, as there have been few applications of this in 
New Zealand to date. With water availability and irrigation being currently very topical, this 
seemed like an appropriate application. This project as such makes a number of simplifying 
assumptions, both in the hydrology and the economics, that leave scope for improvement in 
future work. We outline the main areas below.  

7.1.1. Distinguishing climate change from climate variability 

The GCMs used to drive the hydrological modelling are able to encapsulate long-term natural 
oscillations, such as the Interdecadal Pacific Oscillation (IPO). The IPO, as observed, has a 
periodicity on the order of 20 to 30 years, a period that extends beyond the time frames used 
to average hydrological results here. This can pose a problem in that hydrological differences 
between time periods (i.e., baseline, mid-century, and late-century) will reflect a combination 
of both gradual (but not linear) climate change as well as natural climate variation. If the 
simulated IPO during one projection period is out of phase from the other, then the resulting 
analysis would either exaggerate or downplay the effect of climate change. This effect has not 
been analysed, but it could be responsible for the non-monotonic trend often seen across 
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RCPs. RCP4.5 often stands out as exhibiting more severe changes than RCP6.0, which can be 
traced to higher mid-century temperature increases (Ministry for the Environment 2018). This 
may be due to inter-annual climate variability, due to higher radiative forcing of RCP4.5 
compared with RCP6.0 in the early century, or a combination of both. 

7.1.2. Hydrological model uncertainties 

The TopNet model was designed to have a sufficiently comprehensive description of 
catchment hydrology to be used for the diverse range of landscapes and climate characteristics 
present in New Zealand. This results in a model that approximates all of the country’s 
hydrology with the same set of hydrological process representations. TopNet is widely used in 
hydrological modelling applications in New Zealand; for example for operational flow 
forecasting (McMillan et al. 2013), to predict the hydrological impacts of climate change (Poyck 
et al. 2011; Zammit and Woods 2011), and for national water accounting (Collins et al. 2015).  

At the start of the project the current limitations of the model include the lack of a dedicated 
glacier component (without coupling to a glacier energy balance model), no simulation of deep 
groundwater processes that transfer subsurface water between sub-catchments (Yang et al. 
2016), and the use of a single ground water store in each catchment which restricts the 
possible recession behaviour (McMillan et al. 2011). Those limitations are currently being 
addressed by NIWA through improved conceptualisation and parametrisation of TopNet 
through the development of the New Zealand Water model. The TopNet model (used in this 
project) was assessed against a consistent suite of test procedures aiming to quantify spatial 
and temporal patterns in performance of representation of various part of typical hydrological 
signatures within a hydrological model (McMillan et al., 2016). The authors indicate that model 
performance varied in space and time with better scores in larger and medium-wet 
catchments, and in catchments with smaller seasonal variations. The authors further 
acknowledge that TopNet performance was not sensitive to connectivity to large groundwater 
systems, making the uncalibrated model suitable for national scale assessment.  

Hydrological model uncertainty is usually associated with either model parameterisation or 
model structure. Uncertainty associated with model parameterisation is usually estimated 
using an ensemble of potential model parameters, while uncertainty associated with model 
structure is usually addressed using an ensemble of hydrological models. In this project the 
hydrological model is used in an uncalibrated form and neither of these uncertainties is 
addressed. 

 

7.1.3. Land use coverage 

The focus of the present study is on water resources relevant to agriculture, specifically water 
supply and soil moisture conditions. Results are reported only for parts of New Zealand that 
correspond to agricultural and irrigable land uses. Drawing from the Land Cover Database 
(LCDB v.2, Newsome et al. 2000) these include: 

 Short-rotation cropland; 
 Orchard, vineyard and other perennial crops; 
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 High-producing exotic grassland; 
 Low-producing exotic grassland; and 
 Depleted grassland.  

 

Depleted grassland is included as it may have been or may once more serve as agricultural 
land. The full extent of these land uses is depicted in Figure 10, with a total area of 111,485 
km2. The hydrological model used as the basis for this project (New Zealand Water Model-
Surface, previously referred as TopNet) is currently configured to use LCDB v.2, reflecting 2001 
land cover, rather than the latest version, version four, which corresponds to 2011. There will 
be differences in land use between the two, and these may have hydrological consequences, 
although they are likely to be small in comparison with changes up to 2100. During the course 
of the simulations from 1971 to 2100, however, land use is kept constant. The purpose of this 
is for the hydrological assessment to isolate the effects of changing climate on the hydrological 
response. 
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Figure 10 Agricultural land covers based on the LCDB version 2 (Newsome et al. 2000). Note 
however that there are many small areas of potential agriculture that cannot be seen at this scale. 

 
7.1.4. Cost and benefit calculations 

In further research there is scope to provide more detail in the development of the costs and 
benefits. As mentioned in the methodology section, the costs currently only include the cost of 
constructing the reservoir in the two time periods, but in more detailed analysis it would 
improve the accuracy to include the costs of consent, maintenance, energy if applicable, and 
the opportunity cost of the land used.  

The calculation of benefits also leaves considerable scope for improvement. The current 
calculation relies solely on the relationship between soil moisture deficit and milkfat 
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production, which is dependent on a single study (Tait et al. 2005). Expanding the benefits to 
more accurately reflect the farm system profitability would reflect reality much better.  Rather 
than accept the loss in production, farmers are much more likely to purchase supplementary 
feed to make up for the lost pasture. The costs of supplementary feed may be different from 
the value of the lost milkfat, and capturing these differences may change the outcomes of the 
different pathways.  

In the current analysis we hold the price of milkfat constant over the entire time period. While 
this is of course unrealistic, predicting milk prices is another academic exercise entirely, with 
its own sources of uncertainty. But it would be possible to make different assumptions 
regarding the dynamics of milk prices to determine how much difference they make to the 
decision.  It would be interesting to determine what milk price would justify a larger 
investment now (the increase to $7 analysed here was only sufficiently large to make a 
difference in the equi-probable assumption – although this may also reflect the way that 
benefits are calculated). Changing milk prices over time are a real risk for this type of 
investment, so understanding the implications of a fall in milk prices over time would 
undoubtedly be useful for the industry. 

7.1.5. The ROA process 

The ROA analysis itself could both usefully be expanded on or simplified.  In terms of 
expansion, other questions to examine would be the inclusion of more, or different decision-
nodes. More nodes increases the complexity of the analysis, but would provide greater 
flexibility. We did not include the option to do nothing, but in a further analysis this would be 
useful as one of the options. This would allow the decision-maker the ability to identify the 
value of delaying action, as well as understanding the size and sequence implications.  

The analysis could also usefully be simplified to make the process more accessible to individual 
decision-makers. In its current form, this type of analysis would be very useful for a large-scale 
investment, probably by a collective rather than an individual. Although the analysis is 
relatively straightforward if the hydrological data is available (and conducted in a 
spreadsheet), it is still beyond the complexity most individuals are likely to undertake. 
However, if a ‘tool’ was available allowing the farmer to input their farm location and details of 
their farm business, and their preferred decision-points, the ROA process could be automated. 
Alternatively, the principles of not constructing for the worst case scenario and allowing 
flexibility to expand in future, could be adopted relatively easily without conducting the full 
analysis.  

8. Conclusion 
This study has demonstrated how ROA can be applied to identify the most cost-effective 
option for constructing an on-farm water storage reservoir under a changing climate.  In this 
particular example, the most cost-effective option was to construct a reservoir for the most 
conservative climate change outcome in 2018, and in 2050.  This avoids the expense of 
constructing a large reservoir that would cover the worst case climate outcomes, but where 
the benefits would not outweigh the costs.  The decision to build for the smallest climate 
change is sensitive to a number of factors however, particularly the discount rate and the milk 
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price, both of which result in larger reservoirs being more cost-effective in the first time 
period.  The decision is also sensitive to assumptions regarding the likelihood of future climate 
changes – when the higher and lower scenarios are assigned a lower likelihood, this changes 
the decision to a larger storage size in 2018.  This analysis illustrates the benefits of ROA when 
the future is uncertain. It enables decision-makers to revise their decisions over time rather 
than locking themselves into a decision made now that has long-term consequences.  

We used an example of water storage on a dairy farm to illustrate how ROA can be used, using 
the climate data available in New Zealand. We developed a method to use the range of 26 
GCM/RCP combinations to generate estimates of likelihood. This method is suitable for 
application across a range of investment decisions in New Zealand, where the initial cost is 
large and the investment is at least partially irreversible.  We believe that using ROA for these 
types of decisions will enable more cost-effective investment than cost-benefit analysis or 
other methods that use only a single climate scenario.  
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