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Abstract. A new climate modelling project has been de-
veloped for regional climate simulation and the attribution
of weather and climate extremes over Australia and New
Zealand. The project, known as weather@home Australia–
New Zealand, uses public volunteers’ home computers to
run a moderate-resolution global atmospheric model with a
nested regional model over the Australasian region. By har-
nessing the aggregated computing power of home computers,
weather@home is able to generate an unprecedented number
of simulations of possible weather under various climate sce-
narios. This combination of large ensemble sizes with high
spatial resolution allows extreme events to be examined with
well-constrained estimates of sampling uncertainty. This pa-
per provides an overview of the weather@home Australia–
New Zealand project, including initial evaluation of the re-
gional model performance. The model is seen to be capa-
ble of resolving many climate features that are important for
the Australian and New Zealand regions, including the in-
fluence of El Niño–Southern Oscillation on driving natural
climate variability. To date, 75 model simulations of the his-
torical climate have been successfully integrated over the pe-
riod 1985–2014 in a time-slice manner. In addition, multi-
thousand member ensembles have also been generated for
the years 2013, 2014 and 2015 under climate scenarios with
and without the effect of human influences. All data gener-
ated by the project are freely available to the broader research
community.

1 Introduction

Extreme weather and climate-related events often have a seri-
ous impact on our economy, environment and society. This is
particularly true in Australia and New Zealand where recur-
ring heat waves, floods, droughts and wildfires have resulted
in the loss of life, property and livelihoods (e.g. Steffen et al.,
2013). In the aftermath of these events the scientific com-
munity is often faced with the task of quantifying the link
to different causal factors, including human-induced climate
change (e.g. Arblaster et al., 2015). The delivery of such in-
formation in a timely, clear and reliable manner is an ongo-
ing challenge. Therefore, developing a capacity to research
extremes and understand their causes continues to be crucial
for predicting and managing their impacts.

There is clear evidence that the climate has changed as
a result of human influence (Stocker et al., 2014; Reisinger
et al., 2014) and that some aspects of extremes have changed
across the globe as a result (Seneviratne et al., 2012). How-
ever, this does not imply that the occurrence of every recently
observed extreme weather or climate-related event was the
result of human influence on the climate system, as such
events may still have occurred (however unlikely) in the ab-
sence of such an influence (e.g. Stott et al., 2013). This can
be understood by recognising that our climate is a com-
plex, chaotic system that is influenced by internal climate
variability and external forcings. Processes that generate in-
ternal climate variability include atmosphere–ocean telecon-
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nections, such as El Niño–Southern Oscillation (ENSO), as
well as chaotic internal variability. Meanwhile, external forc-
ings of climate can be either natural, such as explosive vol-
canic eruptions, or anthropogenic, such as greenhouse gas
emissions from the burning of fossil fuels.

Distinguishing between the responses to internal and ex-
ternal climate forcings becomes increasingly difficult when
moving from global to regional scales, due to a lower signal-
to-noise ratio (Karoly and Wu, 2005; Stott et al., 2011).
That is to say, analysis on smaller spatial scales offers less
opportunity to reduce the magnitude of natural variability
through spatial averaging or other techniques. This is par-
ticularly true for Australia, which is recognised as having
one of the most variable climates in the world (e.g. Nicholls
et al., 1997). The variability in Australia’s climate is driven
by a number of factors, in particular the year-to-year vari-
ations in sea surface temperatures in both the Pacific and
Indian oceans (Risbey et al., 2009). ENSO represents the
variations in sea-surface temperatures and atmospheric pat-
terns across the Pacific Ocean, with warm (El Niño) condi-
tions producing below-average rainfall, above-average tem-
peratures and often drought over much of northern and east-
ern Australia (McBride and Nicholls, 1983; Holland, 1986;
Jones and Trewin, 2000). The reverse is true during cool
(La Niña) conditions. Although New Zealand’s climate is
not usually affected as strongly by ENSO as are parts of
Australia, there is nevertheless a significant influence (e.g.
Gordon, 1986). In addition to ENSO there are a number of
other drivers of internal climate variability for Australia and
New Zealand, including the Southern Annular Mode (Hen-
don et al., 2007) and the Indian Ocean Dipole (Saji et al.,
1999). Therefore, any assessment of extreme weather and
climate-related events needs to consider the interplay of both
internal climate variability and forced external changes, such
as the warming effect caused by increased greenhouse gas
emissions.

In light of this challenge, an emerging field of climate
science (known as event attribution) is seeking to quantify
how the risk of weather and climate-related extremes has
changed as a consequence of particular forcings acting on
the climate system (Allen, 2003; Stott et al., 2004; Pall et al.,
2011; NASEM, 2016). This is typically achieved by compar-
ing the probability of such events under the current (histori-
cal) climate against that for counterfactual worlds in which
particular forcing factors (such as human-induced climate
change) are absent. We of course are unable to observe a
world in which either anthropogenic or natural forcing is ab-
sent; therefore, physically based climate models are required
to estimate how the climate would respond to the absence of
anthropogenic forcings (Hegerl and Zwiers, 2011).

Undertaking event attribution studies of extreme weather
events is typically restricted by two important modelling re-
quirements: ensemble size and model resolution. Extreme
weather events are, by definition, rare, and therefore very
large ensembles of climate model simulations are needed

in order to study the event with a high degree of confi-
dence. Meanwhile, as many extreme events occur at a re-
gional or local scale, the model must have sufficient res-
olution to realistically capture the event. Due to these re-
quirements, such an undertaking would be computationally
expensive and typically beyond the capability of conven-
tional computing resources. However, these demands may be
met through the aggregated power of distributed computing
projects. Proposed by Allen (1999) and launched in 2003,
climateprediction.net became the largest climate modelling
experiment to date by running climate models on volunteers’
home computers. While the project was originally focussed
on running low-resolution global coupled atmosphere–ocean
(Frame et al., 2009) and medium-resolution atmosphere-only
models (Pall et al., 2011), a recent advancement (known
as weather@home) involves running the global atmosphere-
only model with a nested higher-resolution regional model to
generate very large ensembles of model simulations (Massey
et al., 2015). This regional model configuration has been im-
plemented and evaluated over Europe (Massey et al., 2015)
and the western United States (Li et al., 2015; Mote et al.,
2015) and successfully used in a number of event attribu-
tion studies (e.g. Peterson et al., 2013; Herring et al., 2014,
2015; Schaller et al., 2016). Given the success of these ex-
isting weather@home regional climate modelling projects it
was decided to implement a regional configuration over Aus-
tralia and New Zealand.

The primary purpose of this paper is to provide a descrip-
tion and basic evaluation of the weather@home Australia–
New Zealand modelling setup. This is achieved by compar-
ing the regional model output with observations from the re-
cent past over regions of Australia and New Zealand. Be-
cause the modelling setup is intended to be used for event at-
tribution studies, particular focus is given to an assessment of
how well the model represents (1) mean spatial fields and in-
terannual climate variability, (2) regional teleconnections to
ENSO and (3) the distribution of daily variables at regional
and local scales. For the purpose of this study we have re-
stricted our analysis to only consider temperature and pre-
cipitation as these are the variables most commonly assessed
in event attribution studies.

The remainder of this paper is structured as follows:
Sect. 2 describes the model setup and summarises the ex-
perimental design for the representation of the historical cli-
mate, while Sect. 3 provides details on the evaluation of the
system. As a thorough comparison with observations is be-
yond the scope of this paper, we provide some illustrative
comparisons of both temporal and spatial patterns. Section 4
describes how the counterfactual climate scenarios are con-
structed for the purpose of undertaking event attribution stud-
ies. The main conclusions are given in Sect. 5, including
plans for future improvements.
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Figure 1. Domain and elevation of terrain (metres) used in the
weather@home regional model simulations. Land areas have been
separated into six regions for subsequent evaluation: northern Aus-
tralia (NAUS), central Australia (CAUS), eastern Australia (EAUS),
southwest Australia (SWAUS), southeast Australia (SEAUS) and
New Zealand (NZ). The coastal city of Melbourne and the inland
city of Mildura are identified by asterisks.

2 Model description

Weather@home Australia–New Zealand uses the Hadley
Centre Atmospheric General Circulation Model 3P
(HadAM3P; Massey et al., 2015) with an embedded regional
model (HadRM3P; Jones et al., 2004) over the Australasian
CORDEX domain (Fig. 1). The HadAM3P–HadRM3P
model formulation is based on the atmospheric component
of the HadCM3 general circulation model (Gordon et al.,
2000) with a number of improvements with respect to the
calculation of clouds and convection, and a more realistic
coupling of vegetated surfaces with the soil (Massey et al.,
2015). HadAM3P–HadRM3P is a grid-point model which
solves equations of motion, radiative transfer and dynamics
explicitly on the same scale as the grid. HadAM3P is
integrated with a 15 min timestep, has 19 vertical levels
and has a regular latitude–longitude grid (1.25◦ longitude
by 1.875◦ latitude) with regular poles. HadRM3P has a
5 min timestep, has 19 vertical levels and uses a rotated grid
(0.44◦ longitude by 0.44◦ latitude) with an artificial North
Pole at 60.31◦ N, 141.38◦ E for the Australia–New Zealand
configuration. This allows the region of interest to lie about
the Equator of the rotated grid, thus ensuring that each grid
box in the nested region has approximately the same area.
HadAM3P and HadRM3P are run in an interleaved manner:
HadAM3P first runs for a full model day, providing the
lateral boundary conditions to HadRM3P, which then also
runs for one full model day. The coupling is strictly one-way,
meaning that there is no feedback from the regional model
to the global model. There is a four-point buffer zone around
the perimeter of the regional model, where the lateral bound-
ary conditions are relaxed to values temporarily interpolated
from 6-hourly output from HadAM3P. The land surface

scheme incorporated within the model is MOSES 1.0 (Met
Office Surface Exchange Scheme, Cox et al., 1999), with
fixed surface types (one vegetation type and one soil type
per grid box). Further details of the HadAM3P–HadRM3P
configuration are provided by Massey et al. (2015) but with
the European region replacing the Australasian region.

Weather@home is able to generate very large ensembles
of climate model simulations by harnessing spare CPU time
on a network of volunteers’ personal computers. This dis-
tributed computing capacity is made possible by the Berke-
ley Open Infrastructure for Network Computing (BOINC;
Anderson, 2004) open-source infrastructure. Each volunteer
signs up for the weather@home project via the BOINC client
software, which automatically downloads the climate model
setup to the volunteer’s computer. Individual work units are
then received from the BOINC server and run when the com-
puter is idle. The work unit contains all necessary configura-
tion inputs needed by the climate model to run the exper-
iment for one model year (December–November), under a
specific climate scenario. After the completion of each model
month the output is post-processed to retain only a selection
of key meteorological variables. This is required in order
to minimise file size for data transfer and storage. A com-
plete listing of these output variables is provided as supple-
mentary material. Following this post-processing stage the
final results are returned to a server hosted at the Tasmanian
Partnership for Advanced Computing in Hobart, Australia.
On average, it takes a standard home computer around 4–
5 days to integrate over the model year. At the completion of
the model year an additional file (the restart file) is returned
that represents the final state of the atmosphere. This final
state can then be incorporated as the initial conditions for a
new work unit describing the next year of the climate sce-
nario. Therefore, this allows the system to run for a year at a
time, in a time-slice manner, to generate an extended time
series of climate model integrations. As this resubmission
process is not automated, the generation of these continuous
model runs is somewhat restricted by the need for project
scientists to manage restart files and work unit regeneration.
Therefore, typical event attribution studies will only generate
multi-thousand ensemble members for a single model year of
interest.

In order to represent the range of internal variability that
is possible with the model, a perturbation is applied to the
initial conditions of each work unit. These perturbations are
applied to the global climate model in the form of slight
changes to the three-dimensional potential temperature field.
The initial condition perturbations were generated by calcu-
lating the next-day differences within a 1-year integration of
the global model and then multiplying by five global scaling
factors (1.1, 1.2, 1.3, 1.4 and 1.6) (see Massey et al., 2015,
for details). This resulted in the generation of 1740 differ-
ent initial condition perturbations. In the case of an extended
(multi-year) model experiment, these perturbations are only
applied to the initial condition of the first model year; no per-
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turbation is applied thereafter so as to allow for the contin-
uous integration of the model under its specific climate sce-
nario. Further initial condition perturbations are also applied
to the first year of the model integration using a range of
starting conditions with different large-scale circulations and
soil moisture amounts. That is to say, sets of model simu-
lations are initialised using 100 different restart files taken
from control simulations for the preceding year. Although
all of the initial condition perturbations are only applied to
the global model, they immediately affect the regional sim-
ulations through the previously described transfer of lateral
boundary conditions at the end of the first global model day.

As HadAM3P and HadRM3P are both atmosphere-only
models, they require specified forcings at the boundary be-
tween the atmosphere and ocean. These lower boundary con-
ditions come in the form of prescribed sea surface tempera-
ture (SST) and sea ice fraction (SIF) fields. For the historical
1985–2014 climate scenario used in this paper for the pur-
pose of model evaluation, both the SST and SIF fields were
sourced from the UK Met Office Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA) dataset (Don-
lon et al., 2012). OSTIA provides global, daily fields with a
spatial resolution of 0.05◦ latitude× 0.05◦ longitude. In or-
der for these fields to be defined per grid box of the global
climate model, they are regridded to the HadAM3P reso-
lution of 1.875◦ latitude × 1.25◦ longitude using an area-
weighted averaging method. Any discrepancy between the
HadAM3P and OSTIA land–sea masks is resolved by tak-
ing the mean of surrounding ocean grid points. In addition
to these lower boundary conditions, the model also requires
the atmospheric composition to be specified. The concen-
trations of greenhouse gases (CO2, CH4 and N20), ozone,
halocarbons, sulfur species and solar anomalies are all pre-
scribed to follow the recommendations outlined by the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5; Tay-
lor et al., 2012). The halocarbon gases (CFC113, CFC11,
CFC12, HCFC22, HFC124 and HFC134A) are represented
as a single value per time point in the time series, which pro-
duces the equivalent radiative forcing as if all six gases were
modelled. Post-2005, the greenhouse gas concentrations and
aerosol emissions follow the RCP 8.5 scenario. An overview
of the model boundary conditions for the counterfactual cli-
mate scenarios is presented in Sect. 4.

3 Model evaluation

In order to establish how well weather@home represents the
historical climate over Australia and New Zealand, we gen-
erate 75 model simulations for each year over the period De-
cember 1985 to November 2014. While the modelling setup
is capable of generating much larger ensemble sizes, this
would be unnecessary for characterising the climatology and
overall distribution of climate variables over a 29-year pe-
riod. Therefore, computing resources were directed towards

generating very large ensembles of climate simulations for
the individual years of 2013, 2014 and 2015, for subsequent
use in event attribution studies that are beyond the scope of
the current paper.

The spatial fields of the regional model output are sepa-
rated into six regions (Fig. 1) for subsequent examination.
Australia has been broken up into five established regions
based on distinct climatic zones: northern Australia (NAUS),
central Australia (CAUS), eastern Australia (EAUS), south-
west Australia (SWAUS) and southeast Australia (SEAUS)
(see CSIRO and Bureau of Meteoroloy (2015), for de-
tails). Meanwhile, the North Island and South Island of New
Zealand (NZ) are treated as a single region. While each of
the six regions could have been further broken down for sub-
regional detail, it would be impractical to present such a mass
of information here.

3.1 Observational datasets

Evaluation of weather@home is undertaken by comparing
the regional model output to two observational datasets: for
evaluation over Australia we use the Australian Water and
Availability Project dataset (AWAP; Jones et al., 2009) and
for New Zealand we use the Virtual Climate Station Net-
work dataset (VCSN; Tait et al., 2006). The AWAP dataset
provides daily and monthly gridded fields of rainfall and tem-
perature extending back to 1911 on a 0.05◦× 0.05◦ grid and
is highly regarded for studying trends and variability over
Australia (e.g. Risbey et al., 2013; Min et al., 2013; King
et al., 2013; Perkins and Alexander, 2013). For the purpose
of this study we have masked the AWAP data over inland
regions of Australia where there is low station density. Anal-
ogous to AWAP, VCSN provides high-resolution (0.05◦ lat-
itude× 0.05◦ longitude) estimates of daily rainfall and tem-
perature over New Zealand extending back to 1972. While
these observational datasets may be subject to uncertainties
in and of themselves, they have nevertheless been found to be
appropriate for use in model evaluation studies (e.g. Bennett
et al., 2014; Moise et al., 2015).

In order to compare model output and observations, a
remapping of the observational datasets onto the HadRM3P
model grid is required. For temperature this is achieved us-
ing bilinear interpolation. For precipitation, a conservative
remapping scheme is used to ensure that the total amount of
precipitation in the remapped data is the same as in the orig-
inal data.

3.2 Climatological mean fields and inter-annual
variability

We first examine weather@home’s ability to correctly rep-
resent seasonal mean fields of temperature and precipitation.
By averaging over the 29-year period we are attempting to
reduce the internal atmospheric model variability about the
mean state. Therefore, any differences between the obser-
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Figure 2. Seasonal average daily maximum temperatures (◦C) for 1985–2014 for DJF (left), and JJA (right), from the weather@home
regional model HadRM3P (top), and the observational datasets (middle; AWAP over Australia and VCSN over New Zealand). The bottom
panels show the difference between HadRM3P and the corresponding observational dataset.

vations and model output may be interpreted as model de-
ficiencies. We have separated our analysis into seasons and
for brevity are only showing results for the Austral summer
(December–February) and winter (June–August). While not
shown here, the weather@home model is able to adequately
resolve the onset/cessation seasons for temperature and pre-
cipitation (see Figs. S11–S13 in the Supplement).

The spatial fields of seasonal average daily maximum tem-
perature (Tmax) and minimum temperature (Tmin) are shown
in Figs. 2 and 3, respectively. In each of these figures, the top
panels show the mean field from HadRM3P, averaged over
the 75 ensemble members for the 29-year period, while the
middle panels show the mean for the observational datasets.
The bottom panels show the difference between the model
and observations and can be interpreted as an indication of
model bias. Overall, the model is able to capture the large-
scale spatial patterns of temperature very well, including the
regions of warmest temperature over northern parts of Aus-
tralia and the persistently cooler temperatures over southeast
Australia and New Zealand, associated with topography. For
Tmax, HadRM3P is capable of representing mean summer-
time values to within ±1 ◦C over most parts of Australia and
over the North Island of New Zealand (Fig. 2e). In winter, the
model underestimates Tmax at almost every land grid point

across the model domain (Fig. 2f). For Tmin, the model over-
estimates summertime values at most locations, particularly
over southwest and southeast Australia and the northern and
eastern parts of New Zealand (Fig. 3e). In winter, the model
overestimates Tmin in the north and east of Australia and in
parts of New Zealand, while it underestimates temperatures
to the west (Fig. 3f). The prominent negative bias in tempera-
tures along the western coastline of the South Island of New
Zealand in both seasons may be the result of two features:
an inability of the model to correctly resolve temperature in
this region of complex topography, as well as possible limi-
tations in the VCSN network due to a lack of stations at high
elevations.

The simulated patterns of seasonal average precipitation
(Fig. 4) clearly demonstrate weather@home’s ability to cap-
ture both seasonal variations and, at least to some extent, the
influence of topography. Over Australia, the regional model
is able to capture the strong summertime monsoon rainfall
over the northern parts of the continent, as well as the rainfall
associated with onshore moisture transport along the eastern
seaboard (Fig. 4a). There is a distinctly different rainfall dis-
tribution over Australia in winter, with the highest rainfall
restricted to the southern parts of the continent, including re-
gions of topography, where rainfall is often associated with
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Figure 3. As in Fig. 2 but showing seasonal average minimum temperature (◦C).

Figure 4. As in Fig. 2 but showing seasonal average precipitation (mm day−1). The difference fields are expressed as percentages relative to
the observational datasets.
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Figure 5. Time series of summertime (December–February) average maximum temperature for the respective study regions (as labelled) for
1986–2014. Ensemble-mean values from weather@home simulations are shown by the solid line (5–95th percentile shaded envelope) while
the observations (AWAP over Australia and VCSN over New Zealand) are shown by the dashed line. The time series are given as anomalies
relative to the mean of the entire period. The bias between the medians for the model and observations is indicated, along with the Pearson
correlation coefficient (r; calculated using a two-sided test) and p value for testing non-correlation.

Figure 6. As in Fig. 5 but showing average minimum temperature.

the passage of frontal systems (Fig. 4b). Over New Zealand,
the model is able to resolve the strong rainfall gradient along
the South Island, reflecting the region’s complex topogra-
phy. Overall, weather@home tends to underestimate rainfall
in both seasons over Australia and New Zealand, with the
exception of parts of southwest and eastern Australia in sum-
mer (Fig. 4e), and parts of the South Island of New Zealand
in winter (Fig. 4f). The prominent differences in wintertime
rainfall along the southern and western coastlines of Aus-
tralia (model≤ 50 % of observations; Fig. 4f) suggest that

the model may not be able to fully capture the influence of
local land–sea breezes and/or the influence of passing frontal
systems at those locations. Meanwhile, the prominent differ-
ences over northern Australia in JJA (Fig. 4f) are an artefact
of expressing the differences as percentages; the actual rain-
fall values for both observations and the model output are
both small over this region, meaning that any resulting small
differences equates to a large percentage.

Next, we assess HadRM3P’s capacity to represent inter-
annual variability. For each of the regional clusters identi-
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Figure 7. As in Fig. 5 but showing average precipitation.

fied in Fig. 1, we compare time series of annual variations
of seasonal average temperature and precipitation from the
model and the observational datasets (Figs. 5–7). Here, we
express these time series as anomalies relative to the period
mean. The solid lines show the median of the 75 ensemble
members, while the shading represents the 5–95th percentile
range. Meanwhile, the dashed line represents the correspond-
ing observational dataset. For brevity, we only show time se-
ries for summer here (winter time series are included as Sup-
plement).

There is general agreement between the interannual vari-
ability captured by weather@home and the observational
datasets (Figs. 5–7). For each of Tmax, Tmin and precipita-
tion there are specific years that correspond to peaks/troughs
in both the model estimates and observations, and the overall
shapes of the curves are similar. In addition, the observations
lie within the model ensemble range for each year with only
a few exceptions (e.g. northern Australian rainfall; Fig. 7a).
Because sea surface temperatures are the only source of inter-
annual variability that is common to both the weather@home
simulations and the observational records, the agreement be-
tween the time series (as represented by the correlation coef-
ficients between the median values for the model simulations
and observations) in Figs. 5–7 highlights the importance of
sea surface temperatures on driving the climates of Australia
and New Zealand.

3.3 Response to ENSO

Given that ENSO is an important driver of internal climate
variability for Australia and New Zealand (e.g. Nicholls
et al., 1997), we assess weather@home’s ability to correctly
simulate ENSO teleconnections. This is achieved by compar-
ing regional model output against observations for the differ-

ent phases of ENSO: La Niña, neutral and El Niño. La Niña
(El Niño) events were defined when the average Nino-3.4 in-
dex was at or below (above) −1 ◦C (+1 ◦C) anomaly for at
least 3 months in the September–February period. Neutral
events were defined as periods when the average Nino-3.4
index did not go beyond ±1 ◦C anomaly in any month of
September–February. These criteria allowed an equal num-
ber of events to be selected for each of the three ENSO
phases: La Nina (1988–1989, 1998–1999, 2007–2008, 2010–
2011), neutral (1992–1993, 1993–1994, 2003–2004, 2012–
2013) and El Niño (1994–1995, 1997–1998, 2002–2003,
2009–2010). Furthermore, these criteria allowed the events
to be relatively evenly spread across the period of available
model simulations (1985–2014). The events were grouped
according to their ENSO phase for subsequent analysis.

Figures 8–10 show the distributions of temperature and
rainfall, averaged over September–February, for the differ-
ent phases of ENSO. For the purpose of model evaluation we
present results for each of the six study regions. The model-
derived distributions are shown as box-and-whisker plots;
each box represents the median and first and third quartiles,
while the whiskers extend to the 5th and 95th percentiles.
Meanwhile, the corresponding values calculated from the ob-
servational dataset are represented as dots. It is worth noting
that while we only have four examples of observed atmo-
spheric response to each of the La Niña, neutral and El Niño
forcings, we have 4× 75 examples from weather@home.
This large number of model simulations allows us to reduce
the influence of internal chaotic variability by averaging in
the modelled ensemble; thus, differences between the me-
dian values of the box plots are likely to be representative of
forced responses to the observed teleconnections.

Overall, weather@home is able to correctly represent the
response of temperature and rainfall to changes in the phase
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Figure 8. September–February average maximum temperature for the respective study regions (as labelled) during different phases of ENSO:
La Niña (LN), neutral (NU) and El Niño (EN). Observed values are plotted as coloured circles while values from the weather@home
HadRM3P simulations are shown as box-and-whisker plots. The boxes show the median and interquartile range while the whiskers extend
to the 5th and 95th percentiles. See text for details.
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Figure 9. As in Fig. 8 but showing minimum temperature.

of ENSO. As ENSO changes from the La Niña to El Niño
phase, there is a warming shift in the distributions of Tmax
over each of the Australian regions (Fig. 8a–e). Meanwhile,
the model is able to capture the reverse relationship for Tmax
over New Zealand (Fig. 8f). The response of Tmin to changes
in the phase of ENSO is less pronounced over Australia
(Fig. 9a–e), while conditions continue to be warmer over
New Zealand during the La Niña phase (Fig. 9f). For pre-
cipitation, there is a shift towards higher rainfall totals over
each of the study regions during La Niña conditions (Fig. 10).
Weather@home seems able to capture the observed non-
linear ENSO–precipitation relationship despite many global
coupled and atmosphere-only models failing to do so (King

et al., 2015b). While the limited observations prevent us from
determining whether the magnitude of these shifts are suit-
ably represented by the model, they do suggest that the di-
rections of these shifts are correct.

3.4 Daily variability

Because the weather@home setup is specifically designed
for use in the attribution of extreme weather events, it is im-
portant that the model is able to correctly represent the distri-
bution of daily values of temperature and precipitation at re-
gional and local scales. Such an assessment needs to consider
not only the model’s ability to correctly resolve the mean
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Figure 10. As in Fig. 8 but showing precipitation.

state but also the tails of the distributions where the extreme
events lie. By identifying any limitations of the model, a bias
correction approach may be used to correct for systematic
errors.

Here, we compare the distributions of daily Tmax, Tmin
and precipitation from the ensemble of weather@home re-
gional simulations against the distribution of these variables
in the observational dataset. By way of example, results for
the SEAUS region are presented in Fig. 11 for both sum-
mer (DJF) and winter (JJA) in the form of quantile–quantile
plots. The corresponding plots for the other regions are pre-
sented as supplementary material. For brevity, we do not in-
tend to provide a thorough assessment of the model’s rep-
resentation of daily fields over each of the defined study do-
mains. Rather, we highlight how the large ensemble provided
by weather@home allows us to systematically identify biases
in the modelled distribution.

Figure 11 is constructed by extracting the daily fields of
Tmax, Tmin and precipitation from the regional model sim-
ulations and calculating area averages over the SEAUS re-
gion. As the model uses a 360-day calendar, and there are
2175 model simulations (75 model realisations for each of
the 29 years), this results in a total sample size of 195 750
daily values for each season. This large sample size provides
a thorough sampling of physically plausible climate states
represented by the model and, thus, allows the tails of the
distribution to be resolved with confidence. The solid blue
line in Fig. 11 identifies the percentile values when consider-
ing all of the 2175 model runs together, while the envelope
shows the 5th to 95th percentile range for values at each per-
centile when considering each model run separately. There-
fore, the range of this envelope provides an assessment of
both sampling uncertainty and internal variability.

Figure 11 shows that the weather@home regional model
provides an adequate representation of the distribution of

daily summertime Tmax, Tmin and precipitation averaged over
SEAUS, when compared against the AWAP observational
dataset. That is to say, the solid blue line is almost directly
overlying the 1 : 1 line of agreement (shown in black). The
model is capable of correctly resolving not only the mean
state but also the tails of the distribution (represented by the
1st and 99th percentiles). The large spread in the envelope in-
dicates that the model is capable of representing a wide range
of temperatures and precipitation rates; therefore, in order to
fully sample internal variability of the model, a large ensem-
ble is necessary.

The relatively high resolution of the weather@home re-
gional model, and the large number of model simulations,
allows the performance of the model to also be assessed
at much more local scales. By way of example, quantile–
quantile plots have also been generated for the coastal city
of Melbourne and the inland city of Mildura by extracting
and examining the corresponding nearest model grid point
(see Supplement). Overall, the weather@home setup pro-
vides sufficient model resolution and ensemble sizes to al-
low the model to be assessed (and where appropriate, bias
corrected) for subsequent use in event attribution at both the
regional and local scales.

4 Creating counterfactual climate scenarios

In order to quantify how human-induced climate change has
altered the likelihood of extreme weather and climate re-
lated events, large ensembles of model simulations are re-
quired under two distinct scenarios: under current (histori-
cal) climate and under a counterfactual (natural) climate as
might have been without human influence on atmospheric
composition. Up to this point we have only considered the
weather@home model under the observed climate scenario.
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Figure 11. Quantile–quantile plots showing distributions of daily maximum temperature (a, b), minimum temperature (c, d) and precipita-
tion (e, f), averaged over southeast Australia. Distributions are shown for December–February (a, c, e) and June–August (b, d, f). The solid
blue line shows the percentile values for the entire ensemble of model simulations, while the blue envelope shows the 5th to 95th percentile
range of values for individual ensemble members.

Therefore, a brief description of the counterfactual climate
scenarios is provided here.

The key differences between the observed and counterfac-
tual climate scenarios are the lower boundary conditions used
to drive the weather@home model. As outlined in Sect. 2,
simulations for the historical climate are driven by historical
SSTs and sea ice from the OSTIA dataset, as well as present
day atmospheric composition (well-mixed greenhouse gases,
ozone and aerosols). For the counterfactual climate the model
is driven by different atmospheric composition and different
sea ice and SST specifications; the atmosphere has prescribed
pre-industrial (1850) levels of greenhouse gases, ozone and
aerosols, the sea ice extent corresponds to the year of maxi-
mum sea ice extent in each hemisphere of the OSTIA record,
and SSTs are modified to remove estimates of anthropogenic

warming. Meanwhile, forcings common to both scenarios
are the natural forcing factors, such as changes in volcanic
aerosols and solar irradiance. There is no change in the land
surface types between the historical and counterfactual cli-
mate scenarios.

As the true climate conditions for the “world without hu-
mans” cannot be observed, weather@home simulations are
run under 10 alternative realisations of the counterfactual
climate scenario. These alternative realisations are derived
from different estimates of the underlying SST warming
(delta-SST) due to human influence, which are separately
calculated from 10 available Coupled Model Intercompari-
son Project Phase 5 (CMIP5) models (Taylor et al., 2012;
see Supplement for details). Monthly-average delta-SST es-
timates are calculated for each of the CMIP5 models by cal-
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Figure 12. Estimated sea surface temperature response pattern (◦C) to anthropogenic forcing, calculated from 10 different CMIP5 models
(as labelled). The temperature responses are calculated for each month (January–December) but are shown here as annual averages.

Figure 13. Return periods of daily December–February maximum
temperature at Melbourne, Australia, for historical climate condi-
tions (red) and various counterfactual climate conditions (grey).

culating the difference between the decadal-average (1996–
2005) SSTs from the “historical” simulations (which include
both anthropogenic and natural forcings) and the correspond-
ing “natural” simulations. The resulting patterns and magni-
tudes of warming are seen to differ across the 10 delta-SST
estimates (Fig. 12). These delta-SST patterns are then sub-
tracted from the historical OSTIA SSTs to provide the lower
boundary conditions for each of the respective counterfactual
realisations.

The use of multiple realisations of the counterfactual sce-
nario allows us to account for some of the uncertainty in
our estimates of a world without anthropogenic influence.
By way of example, Fig. 13 shows weather@home model
estimates of summertime daily Tmax at Melbourne for 2014–
2015, under the historical and counterfactual climate scenar-
ios. For each of these scenarios the model has been run thou-
sands of times and the daily values of Tmax have been ex-
tracted from the nearest model grid point to Melbourne. The
return time curve for the historical climate scenario (shown
in red) is positioned to the left of the curves for the respective
counterfactual scenarios (shown in shades of grey). This sug-
gests that anthropogenic climate change has shifted the dis-
tribution of Melbourne summertime maximum temperatures
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towards warmer conditions. However, the extent of this shift
varies when considering each of the separate counterfactual
scenarios. The multiple realisations of the counterfactual cli-
mate scenario allow for uncertainty to be characterised and
communicated in any resulting attribution statement. More
detailed examples of event attribution studies performed us-
ing the weather@home Australia–New Zealand system can
be found in the 2015 special issue of the Bulletin of the Amer-
ican Meteorological Society investigating extreme events of
2014 (e.g. Black et al., 2015; Grose et al., 2015; King et al.,
2015a; Rosier et al., 2015). The model evaluation undertaken
in each of these studies was tailored to the region of interest
and builds upon the general model evaluation in this paper.

5 Discussion and conclusions

The weather@home Australia–New Zealand climate mod-
elling setup has been described and briefly evaluated. By har-
nessing spare computing power of volunteers’ home com-
puters, weather@home is capable of generating very large
ensembles of regional climate model simulations over Aus-
tralia and New Zealand. This provides a unique tool for un-
dertaking attribution studies of extreme weather and climate
events in the region. To date, 75 model simulations have been
successfully integrated over the period 1985–2014 in a time-
slice manner, while multi-thousand member ensembles have
also been generated under both historical and counterfactual
climate scenarios for the years 2013, 2014 and 2015. All of
this model output is freely available to the research commu-
nity.

The weather@home regional model is seen to be capable
of resolving many climate features that are important for the
Australia and New Zealand regions. This is reflected in the
model’s ability to provide a good representation of tempera-
ture and precipitation, both spatially and temporally. Results
presented here suggest that the model is capable of correctly
simulating ENSO teleconnections, which is a key require-
ment given the importance of ENSO on driving natural cli-
mate variability in the region. The reasonably high resolution
of the regional model, and the large ensemble size achieved
through the distributed computing setup, allows certain types
of extreme weather events to be examined with confidence at
regional and local scales. While the model is seen to exhibit
varying degrees of bias in temperature and precipitation for
different regions, this bias may be corrected through a simple
scaling and offset approach (e.g. Sippel and Otto, 2014; Mera
et al., 2015), or through more complicated approaches such
as quantile mapping (e.g. Bergaoui et al., 2015) or ensemble
re-sampling techniques (e.g. Sippel et al., 2016).

Despite the strengths of weather@home it is important to
recognise some of the limitations of the project. Under the
current model configuration, land surface data (e.g. vegeta-
tion roughness and type) are fixed and are the same for the
historical and counterfactual climate scenarios. Furthermore,

weather@home only uses a single atmospheric model, mean-
ing that any resulting attribution statement can only be made
within the context of that specific modelling setup. In order to
test the dependence of the model simulation on physical pa-
rameterization, future work will employ a perturbed physics
approach whereby perturbations will be applied to compo-
nents of atmospheric and surface physics.

Other areas of current and future work involve generating
larger ensembles for the recent past (1985–2015), as well as
sets of future simulations under varying projections of cli-
mate change. In addition, the model will be driven with ide-
alised SSTs for different phases of ENSO, under both cur-
rent and counterfactual climate scenarios, so as to provide
a novel framework for assessing the relative roles of ENSO
and anthropogenic climate change on recent extreme weather
events. Overall, the weather@home Australia–New Zealand
modelling setup provides a unique modelling resource and
greatly enhances Australia and New Zealand’s capacity for
researching extremes and understanding their causes.

6 Data and code availability

All data generated by the weather@home Australia–New
Zealand project are hosted on a server at the Tasmanian Part-
nership for Advanced Computing, Hobart. These data are
freely available to the broader research community and can
be accessed by contacting the authors of this article. The
HadAM3P and HadRM3P models are both available from
the UK Met Office as part of the Providing REgional Cli-
mates for Impacts Studies (PRECIS) programme. Access to
standard versions of the software is dependent on attendance
at a PRECIS training workshop, after which all source and
other materials will be made available (http://www.metoffice.
gov.uk/research/applied/applied-climate/precis/obtain). As a
programme for supporting developing countries, this work-
shop is free for officially categorised developing coun-
tries and incurs a charge for other country participants.
The code to manage and embed these models within the
weather@home project is specific to their utilisation within
the BOINC environment, which we do not consider within
the scope of this publication.

The Supplement related to this article is available online
at doi:10.5194/gmd-9-3161-2016-supplement.
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