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Abstract Global clusters are derived by applying the self-organizing map technique to the Moderate
Resolution Imaging Spectroradiometer cloud top pressure-cloud optical thickness joint histograms.
These cloud clusters are then used to classify Cloud Feedback Model Intercomparison Project Observation
Simulator Package output from the HadGEM3 (Global Atmosphere version 7) atmosphere-only climate
model. Discrepancies in the Global Atmosphere version 7 representation of particular clusters can be
established by examining the two sets of cluster’s occurrence rate and radiative effect. The overall
differences in the occurrence rates show major discrepancies in several of the clusters, resulting in a shift
from five dominant clusters in Moderate Resolution Imaging Spectroradiometer (above 10% occurrence
rate) to two dominant clusters in the model. A comparison of the geographic distributions of occurrence
rate shows that the differences are strongly regional and unique to each cluster. While comparisons of the
global mean longwave and shortwave cloud radiative effect (CRE) show strong agreement, examination
of the CRE of individual cloud types reveals larger errors that highlight the role of compensating errors
in masking model deficiencies. CRE data for each of the clusters is further partitioned into regions.
This establishes that the bias associated with a cluster is highly variable globally, with no clusters showing
consistent biases across all regions. Therefore, regional level phenomena likely play an important role
in the creation of these errors.

1. Introduction

The general circulation models (GCMs) that provide future climate projections are continually evaluated
against observational data and improved whenever possible. Williams and Bodas-Salcedo (2017) identify the
improvements made within the Met Office Unified Model between its Global Atmosphere (GA) versions 6
and 7. However, despite the continual refinement of climate models, many long-standing issues still remain.
For example, model evaluations have consistently identified problems with cloud simulation including prob-
lems with cloud cover, type, and radiative effects (Kay et al., 2012). Due to the key role of cloud-climate
feedbacks in the climate system, issues with the representation of clouds can generate further errors in other
aspects of simulated climate and impact the interpretation of results from long-term climate model runs.
The nature of feedback effects also means that minor changes in the formulation of the GCM can lead to
substantial differences in the resultant output. For example, a change in the parameterization of nucleation
temperature of supercooled liquid water (Kay et al., 2016) generates significant changes in the absorbed SW
radiation, temperature gradients, and the atmospheric circulation.

While simulating the present-day climate accurately is desirable, this alone does not guarantee the correct
simulation of future climate states, due to the possibility of compensating errors (Williams & Tselioudis, 2007).
A process-based evaluation can be used to reveal such internal model problems, as it allows for the verification
of the individual processes within the model. The standard approaches used in a process-based evaluation
are to either group the data into clusters based on a relationship to observational data (Oreopoulos et al.,
2017a), or to form composites around particular atmospheric features (Grandey et al., 2011). In this paper
an approach similar to the former is used where satellite cloud data are clustered and then the model data
are assigned to these clusters. Our cloud clusters are derived from cloud top pressure-cloud optical thick-
ness (CTP-COT) joint histograms from the Moderate Resolution Imaging Spectroradiometer (MODIS) data set
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and are clustered with the self-organizing map (SOM) technique. The clusters identified from the MODIS data
are then used as a reference against which the HadGEM (GA7) Cloud Feedback Model Intercomparison Project
Observation Simulator Package (COSP) output are compared and contrasted.

The methodology of clustering CTP-COT histograms to define different cloud clusters has been used exten-
sively. Jakob (2003) introduced the application of clustering techniques to CTP-COT histograms, applying the
approach to International Satellite Cloud Climatology Project (ISCCP) histograms from the Tropical Western
Pacific and linking the resultant clusters to specific cloud types. Williams and Tselioudis (2007) and Williams
and Webb (2009) refined and expanded the same technique to allow for the evaluation of model performance.
This was followed by research analyzing the features and behaviors associated with observed cloud clusters.
For example, Tselioudis et al. (2013) first defined global clusters, Tan and Jakob (2013) used clusters to exam-
ine tropical convection, and Oreopoulos et al. (2017a) investigated relationships between the atmospheric
state and aerosol variations. The model evaluation aspects of clusters are also further developed by Mason
et al. (2015) who refined cluster attribution techniques, and Jin et al. (2016) and Jin et al. (2017) who devel-
oped approaches for the intercomparison of several different models. Clusters can also be directly linked to
the cloud radiative effect (CRE; Haynes et al., 2011; Oreopoulos et al., 2014, 2016; Oreopoulos & Rossow, 2011);
similar analysis for precipitation has been done in Leinonen et al. (2016) and Tan et al. (2017). Leinonen et al.
(2016) conclude that clusters show strong intracluster variance between different regions and as such attribu-
tions to given clusters should include some measure of the intracluster variability. McDonald et al. (2016) was
able to achieve similar results to many of the above papers with the usage of the SOM clustering technique
instead of the k-means approach used in those papers. Analyzing the identified clusters can also directly lead
to the identification of subtle phenomena, such as the discrimination between clusters that correspond to
closed versus open mesoscale convective cells demonstrated in McDonald et al. (2016).

2. Data Sets and Methodology
2.1. Observational Data Sets
The CTP-COT histograms used to generate our clusters are derived from the MODIS Collection 6 daily satel-
lite data set at a 1∘ × 1∘ resolution from the Terra and Aqua satellites (Platnick et al., 2003, 2017), restricted
to the year 2007 to correspond to our model output. We follow the methodology detailed by Oreopoulos
et al. (2016). This includes using the data normally removed by the clear-sky restoral process, known as par-
tially cloudy pixels. These pixels are included by summing the regular CTP-COT histogram and partially cloudy
CTP-COT histogram to produce a combined histogram. Some of the limitations of this data set include a
restriction to measurements that occur during daylight, difficulties with low optical thickness cloud, and poor
performance over highly reflective surfaces. As the MODIS satellite is a passive instrument, there is a concern
that it does not properly capture multiple-layer clouds, which play an important role in determining climate
(Oreopoulos et al., 2017b; Yuan & Oreopoulos, 2013). Here this issue is reduced by only comparing with model
data from the COSP simulator. COSP should replicate this problem as it simulates radiative transfer in the
atmosphere (Bodas-Salcedo et al., 2011).

The Clouds and the Earth’s Radiant Energy System (CERES) synoptic 1∘ (SYN1deg) Edition 3A upward radia-
tive fluxes (Wielicki et al., 1996) are used to investigate the relationship between the clusters and the
top-of-the-atmosphere (TOA) radiation balance. The specific product used is the SYN1deg-Day data (Doelling
et al., 2013), which comes in the form of daily averages on a 1∘ × 1∘ grid. The variables used are shortwave
(SW) and longwave (LW) TOA radiative fluxes. Both SW and LW TOA fluxes include both all-sky (any successful
measurement) and clear-sky (measurements where no cloud is present) retrievals. Combining the two differ-
ent retrievals for both of the TOA fluxes can then be used to derive the TOA SW and LW CRE by using the
following equations:

CRESW = SWclear sky − SWall sky (1)

CRELW = LWclear sky − LWall sky (2)

2.2. Model Data
The model used in this analysis is the HadGEM3 (GA7) model, that is, the atmosphere component of HadGEM3
(Hewitt et al., 2011), henceforth referred to as GA7. To enable like-for-like comparison, the MODIS simulator
within the COSP (Bodas-Salcedo et al., 2011) is used on daily output from GA7. This package simulates what the
satellite would observe if the simulated atmosphere was reality, given its particular instrumental constraints
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and taking into account instrument physics. In this study a yearlong simulation of 2007, at a resolution of
1.875∘ × 1.25∘ and nudged toward ERA-Interim reanalyses (Dee et al., 2011) is generated, with COSP output
consisting of daily MODIS COT-CTP histograms and cloud fractions, while the radiative fluxes are taken directly
from the model output. It is worth noting that there is a potential sampling bias that could impact the accuracy
of the model clear-sky LW values (Stanfield et al., 2015). This is the result of CERES observations only being
able to retrieve clear-sky fluxes in regions with low humidity, while the GCMs can remove the effect of clouds
and calculate the clear-sky fluxes in all conditions. This bias is estimated to result in a clear-sky LW fluxes that
are around 1 W/m2 (Stanfield et al., 2015) smaller in the model than observations.

2.3. SOM Technique
The SOM technique is detailed by Kohonen (1998), and the usage of this approach in a range of applications
has been further described by Hewitson and Crane (2002), Cassano et al. (2007), Sheridan and Lee (2011), and
Kohonen (2013). A direct application of the SOM technique to the CTP-COT histograms for the purpose of
developing representative clusters has been described by McDonald et al. (2016), and this process has been
largely reproduced in this paper. The procedure can be summarized as follows:

1. The input data are used to create the initial set of clusters. There are different ways that these vectors can
be initialized. In our case a linear initialization is used. First, the eigenvectors of the input data are calculated
and the two with the greatest eigenvalues are then used to span a two-dimensional rectangular grid. This
grid is then used as the initial set of clusters.

2. Each of the input data points is matched to the closest node as judged by Euclidean distance. That node,
as well as any nodes that fall within a given neighborhood, is then updated to better match the input data.
The matching node is updated to a greater extent than its neighbors.

3. Step 2 is repeated iteratively with each iteration decreasing the size of the neighborhood and the impact of
individual histograms (described in more detail by Kohonen, 1998). This process is repeated until a preset
number of iterations have occurred.

An advantage of the SOM approach relative to alternative clustering methods such as k-means clustering
(Anderberg, 1973) is the continuous ordering of the nodes. This is a result of the SOM process updating all
nodes within a neighborhood in addition to the best matching node, causing the closest nodes to be the
most similar (Kohonen, 1998). Several different approaches have been used in previous studies to deter-
mine the optimal number of clusters, such as cluster cross correlations, geographic cross correlations (Rossow
et al., 2005; Tselioudis et al., 2013), or calculating the field significance of the clusters (Johnson, 2013; Wilks,
2006). These different “objective” methods were applied and resulted in differing optimal cluster numbers,
though commonly the number was larger than 12 clusters, ultimately selected here. Previous work has sug-
gested that changing the number of clusters does not have a major impact on the resulting clusters or their
overall interpretation (Gibson et al., 2017). We therefore believe that this choice will not significantly impact
our results.

The clusters that have been generated from the observational data sets can then be used to generate a similar
set of clusters from the model output, which in turn can be used to evaluate the accuracy of the model rep-
resentation of clusters. The approach used here is the direct matching of the model COSP output histograms
to the clusters derived from observations (by minimizing Euclidean distance; Williams & Tselioudis, 2007).
However, Mason et al. (2015) use a methodology in which the clusters are generated from joint observa-
tional and model data. The former approach was used to allow for a more direct comparison to the work of
Oreopoulos et al. (2016) and McDonald et al. (2016). There are many different approaches that can be used to
extract information from the derived SOM clusters. The most common of these is the evaluation of the rate
that a given cluster occurs at, the relative frequency of occurrence (RFO). The global RFO is weighted by the
cosine of latitude to account for the change of area. Examining the geographic distribution of RFO allows us to
understand how prominent the clusters are in each region. The clusters can also be used to composite other
data such as CRE or cloud phase. As the two different MODIS satellites each generate a measurement each
day, the same daily CRE value can be assigned to two different clusters.

2.4. Metric Methodology
To combine the variety of measures of cluster performance into a single value, Williams and Webb (2009)
introduced the cloud regime error metric for the present-day climate (CREMPD). The CREMPD method calculates
an area-weighted error term for each cluster based on the differences between model and observational net
CRE and RFO. Then the Euclidean norm of this value across all of the clusters is calculated resulting in a single
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Figure 1. Regions considered during the regional analysis. Regions were chosen based on the regions identified in
Leinonen et al. (2016). The abbreviations are short for Northern Ocean, North Atlantic, South Atlantic, Western Pacific,
Eastern Pacific, Southern Ocean, and Deep South.

metric. A similar approach has been used in the work of Mason et al. (2015) for attributing errors in CRE and in
Tan et al. (2017) for rainfall. In these papers and in this work, the metric is used to evaluate how much a given
cluster contributes to the overall problem as opposed to comparing the performance of different models. As
in Mason et al. (2015), the total contribution a given cluster makes to SW and LW CRE is calculated for both
model and observations and these values are then used to calculate the difference in overall CRE associated
with a given cluster (𝛿CREr ) using the following equation:

𝛿CREr = CGA7
r RGA7

r − CCERES
r RMODIS

r (3)

where C represents CRE, R represents RFO, and the subscript r corresponds to the cluster being evaluated. The
RFO and CRE terms are both global area-weighted averages. Once calculated, 𝛿CREr is best interpreted as the
difference in an individual clusters cumulative CRE within the model compared to observations. Therefore,
clusters with the largest 𝛿CREr contribute the most to the overall differences in CRE between the model output
and observations. Following the work of Williams and Tselioudis (2007) and Mason et al. (2015), this term can
then be decomposed into separate terms that represent the source of the discrepancies:

𝛿CREr = CCERES
r ⋅ ΔRr + ΔCr ⋅ RMODIS

r + ΔCr ⋅ ΔRr (4)

with theΔ term representing a difference between the model and observation for the respective variable. The
first term corresponds to the errors due to differences in RFO, the second to the errors due to differences in
CRE, and the third to the covariational errors. While Williams and Webb (2009) examined the net CRE, this work
instead looks at the SW and LW CRE separately to more clearly describe the identified problems. To explore the
variance within each of the clusters, 𝛿CREr is calculated for each of the individual regions shown in Figure 1.
The regions were chosen so that they would be similar to those established in Leinonen et al. (2016, Figure 1)
with the addition of an extra Southern Ocean region. A table with the boundaries of these regions is included
in the supporting information.

3. Identified Clusters

The clusters that result from the SOM processing of the MODIS CTP-COT histogram data set are shown in
Figure 2. Each cluster includes the RFO and total cloud fraction (TCF) values in the subtitles. To understand
if the model is generating a different amount of cloud than the observations, both TCF and RFO must be
considered in tandem, as more frequent occurrence of a low cloud fraction cluster can result in more or
less cloud over a given region dependent on the misrepresentation of other clusters. The histograms in
Figure 2 are not the same as the mean histogram of all the cluster members as the clustering process fea-
tures neighborhood-wide, as well as individual, cluster updates. These mean histograms are included in the
supporting information. This means that the clusters in Figure 2 are better interpreted as representing
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Figure 2. Cluster cloud top pressure (CTP)-cloud optical thickness histogram clusters generated from applying the self-organizing map to the Moderate
Resolution Imaging Spectroradiometer data set. The numbers in the subtitles of each cluster represent the relative frequency of occurrence (RFO) and the mean
total cloud fraction (TCF) of the members of the cluster. When a given grid cell exceeds the limits of the color bar, it is displayed with a number over the grid
cell that states the magnitude. Additionally, if none of the cells exceed the limits of the color bar, the highest occurrence cell is labeled with its magnitude.

the center of mass of a nonuniform distribution. As expected, the clusters within Figure 2 are well ordered. For
example, along the top row, Cluster 1 is characterized by moderate amounts of low cloud of medium thick-
ness with the presence of small amounts of higher cloud, while the transition to Cluster 4 shows a reduction
of higher level cloud and an increase in the quantity of low-lying cloud. Similar ordering is seen along the left
column with the transition from Cluster 1 to 9 displaying an increase in cloud optical depth.

To investigate the relationship between the clusters and the geographic distribution of clouds, the distribu-
tion of RFO of the clusters in the MODIS data set are calculated and plotted in Figure 3. The clusters display
coherent regional distributions despite this information not being included in the SOM process, highlighting
that the clustering is physically meaningful. Examining the clusters with the highest occurrence rates (1, 3, 4,
6, 9, and 12), each of them has a regionally constricted geographic distribution with Clusters 1 and 3 mostly
restricted to the tropics, Cluster 4 mostly contained in the subtropics, Cluster 6 found over land, and Clusters 9
and 12 showing a preference for polar/midlatitude oceans. By combining this information with the results in
Figure 2, links to different kinds of clouds can be established. For example, Clusters 1 and 3 are both confined
to the tropics with Cluster 1 having high cloud fractions and Cluster 3 having a low cloud fraction, suggest-
ing that Cluster 1 represents some form of tropical convective cloud with Cluster 3 potentially capturing a
variety of other tropical clouds, such as trade cumulus or clear skies. Cluster 6 can also be easily identified
as corresponding to clear skies because of its low cloud fraction and negligible occurrence over ocean areas.
Cluster 9 appears to be mostly confined to the storm tracks and as such likely represents a mixture of clouds
linked to fronts. Cluster 12 has a strong presence along the western coastlines of the Americas, Australia,
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Figure 3. Geographic distribution of relative frequency of occurrence (RFO) of the Moderate Resolution Imaging Spectroradiometer cloud clusters. The subtitles
of each of these nodes displays the global mean relative frequency of occurrence and total cloud fraction (TCF) of the given cluster.

and Southern Africa, which when combined with the low height and relatively large thickness in the joint
histogram suggest that it can be linked to stratocumulus cloud decks.

While the clusters in Figures 2 and 3 show a wide range of behaviors, many of the clusters share similar traits,
for example, the regional distributions of Clusters 5 and 6 or the histograms and cloud fractions of Clusters 9
and 10. To aid in the subjective evaluation of the model performance, these clusters are further partitioned
into characteristic groups that we refer to as regimes. Clusters 1 and 2 both correspond to mostly tropical
cloud, although they likely correspond to different kinds of tropical cloud due to their conflicting cloud frac-
tion values. Clusters 3, 4, 7, and 8 are generally restricted to marine regions and confined to low altitudes (high
pressure). Clusters 5 and 6 are both mostly restricted to covering land and show cloud over the entire his-
togram, although it should be noted that Cluster 5 has substantially higher TCF. Clusters 9 and 10 correspond
to clouds at both high and low heights and have a preference for the midlatitudes and polar regions. Due
to the limitations of the satellite, it is unlikely that this regime corresponds to directly overlapping cloud and
therefore is probably from scenes that have both low- and high-level clouds in different areas as expected in
frontal regions. Clusters 11 and 12 only occur over subsidence regions and polar regions, have a high mean
thickness, and are mostly low cloud, suggesting mostly stratocumulus cloud with some frontal cloud. For
the following analysis these regimes are referred to as “tropical cloud” for Clusters 1 and 2; “marine cloud”
for Clusters 3, 4, 7, and 8; “land-based cloud” for Clusters 5 and 6; “mixed-layer cloud” for Clusters 9 and 10;
and “stratocumulus cloud” for Clusters 11 and 12.

The clusters obtained can be directly compared to the previous work in Oreopoulos et al. (2016) and McDonald
et al. (2016). Due to the usage of k-means clustering in Oreopoulos et al. (2016), their clusters should be com-
pared with the mean histograms in the supporting information and not the clusters in Figure 2. In general, the
Oreopoulos et al. (2016) regimes (henceforth referred to as CRs) compare well to the clusters with many of the
high CTP (low-altitude) clusters appearing similar (such as Cluster 3 and CR 11 or Cluster 12 and CR 9); however,
Oreopoulos et al. (2016) identified more high cloud clusters. Some of the Oreopoulos et al. (2016) regimes,
particularly CR3, CR4, and CR5, have no corresponding regimes in our result. These regimes are relatively
rare and likely a result of the different clustering methodologies as the k-means clustering approach used by
Oreopoulos et al. (2016) appears to identify several lower RFO regimes and place a larger portion of results in
the clear-sky cluster. The differences in the clusters should not lead to differences in overall cloud properties
as the analysis is based on the same data; however, it may lead to different attributions of errors. Overall, these
two different sets of MODIS-derived regimes agree well with each other. McDonald et al. (2016) generated
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Figure 4. Difference between the GA7 and MODIS geographic distributions of relative frequency of occurrence (RFO). The number in the subtitle of each of the
clusters represents the overall difference in occurrence rate for the given cluster. The sign convention used in this figure is model minus observations.

their clusters (henceforth referred to as nodes) from a different satellite data set (ISCCP; Rossow & Schiffer,
1991) resulting in a significantly different set of clusters. The clearest difference between our clusters and the
nodes is the prominence of the uppermost left pixel in the ISCCP clusters, which is associated with estab-
lished issues within the ISCCP data set, though a recent refinement on the work in McDonald et al. (2016) has
partially reduced this issue. The ISCCP clustering also features considerably less optically thick cloud. Despite
these differences in the histograms, some clusters show distinct similarities such as the McDonald et al. (2016)
Node 1 and our Cluster 9 or Node 11 and Cluster 12. It could be argued that the separation of Nodes 14 and 15
in McDonald et al. (2016), which is ascribed to closed and open mesoscale convective cells, is mimicked by our
Clusters 11 and 12 although the effect is less clear. Overall it is clear that the joint histograms in the current
work, Oreopoulos et al. (2016) and McDonald et al. (2016) represent a similar range of cluster behaviors.

4. Model Cluster Evaluation

The differences in the geographic distribution of RFO between the satellite data and model output is shown in
Figure 4. The absolute difference in the global average RFO is identified in the subtitle for each cluster. Exam-
ination of RFOs demonstrates that GA7 has a greater amount of the land-based regime but underrepresents
both tropical and marine regimes. However, the clusters within the mixed-layer and stratocumulus regimes
display less consistency. Cluster 6 shows the largest differences between MODIS and GA7, with GA7 simulat-
ing excessive clear skies over the ocean as well as land. This is at least partially due to MODIS having a higher
average cloud fraction than GA7, which leads to an excessive allocation of GA7 histograms to the lowest cloud
fraction cluster. Significant differences also occur for all four of the corner states (1, 4, 9, and 12), each of which
is relatively common in the MODIS data, with these clusters all having reduced occurrence rates within GA7.
Examination of the related differences in geographic distribution shows that the differences between these
clusters take several forms. Overall, there is a shift from having many relatively high occurrence clusters in the
observational data to a few in the model, going from five clusters above 10% in observations to only two in
GA7. We note that Cluster 6 has low intracluster similarity, which suggests that it is a low cloud fraction “catch
all” class when connected to the model output.

The global mean SW CRE shows strong agreement between the GA7 output and CERES observations, while
the LW CRE performs more poorly (see the subtitles in Figure 5). The differences between the model and
observations in both LW and SW CRE are highly regional. For example, both the LW and SW exhibit clear
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Figure 5. Longwave (LW), shortwave (SW), and net cloud radiative effect (CRE) for the Global Atmosphere version 7 (GA7) and Clouds and the Earth’s Radiant
Energy System (CERES) data sets as well as the difference between the two data sets for each of these variables. The number in the subtitle is the area-weighted
global mean of the corresponding figure.

problems in the tropics while there are also issues related to the SW CRE in the polar regions. The problems
over the Southern Ocean for the SW CRE are the well-established Southern Ocean radiative bias identified by
Trenberth and Fasullo (2010) and Bodas-Salcedo et al. (2012). The net CRE values (LW CRE+ SW CRE) also show
good agreement, with most differences restricted to the poles. The results from CERES also compare well to
previous work (Boucher et al., 2013), the slight differences being due to the usage of different CERES data sets.
It should be noted that to ensure fair comparison, the CERES data have been interpolated to the same grid
as GA7.

The overall CRE values can also be analyzed on a cluster-by-cluster basis to ensure that each cluster has its
radiative characteristics accurately simulated. As such the area-weighted mean CRE associated with a given
cluster is calculated for both the CERES observations and GA7 output (Figure 6). Readers should also be cau-
tious in their interpretation of the SW CRE values, as SW CRE is negative by convention, a positive bias indicates
a greater magnitude CRE for the observations as opposed to the LW where it indicates a greater magnitude
in the model. All of the clusters, except for Cluster 5, have a greater LW CRE in observations than in the model,
while the clusters are evenly divided between a positive and negative SW bias suggesting compensating
errors in SW CRE between the clusters. The average size of the error in the LW CRE is comparable to the SW
CRE, with the clusters individually averaging around a 5-W/m2 difference between observations and model
output. The cluster that displays the largest increases in occurrence rate in the model relative to the observa-
tions (Cluster 6) is associated with a relatively minor error in the LW CRE and around average error in SW CRE,
while the clusters that have the largest underestimations of RFO (Clusters 3 and 4) show the largest errors.
In terms of the cloud regimes, the land-based cloud and tropical cloud regimes are the most accurate and the
stratocumulus regime has some minor issues, while the other two cloud regimes perform poorly. However,
these patterns are less cohesive within a regime than they are for the earlier analysis.

Using equation (3), the contribution each cluster makes to the overall difference in SW and LW CRE can be
calculated. To analyze how these contributions vary between the different regions, the output is subset into
the regions specified in Figure 1. The results are shown for the SW CRE in Figure 7 and in the LW equivalent
in Figure 8. The global results indicate that the impact of a few clusters (particularly Clusters 6, 9, and 10) is
disproportionately large. It is also apparent that there are a set of compensating errors across all of the regions
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Figure 6. Distribution of the clusters within longwave-shortwave space. The first two panels show the distribution of
clusters within the Global Atmosphere version 7 (GA7) and Clouds and the Earth’s Radiant Energy System (CERES) data,
respectively, while the third panel shows the differences between the clusters. The bars indicate one quarter of the
interquartile range to match McDonald et al. (2016), and the color indicates the relative frequency of occurrence (RFO) of
the given cluster. The sign convention used in the third panel is model minus observations. CRE = cloud radiative effect.

that would have been masked if our analysis focused only on average properties, which are shown as the
black line in these figures.

From Figure 7, the different hemispheres show substantial differences in mean SW bias, which appears to
be due to the cumulative effect of minor differences in all of the clusters. The different dynamic and micro-
physical properties may also play an important role in creating these hemispheric differences (Oreopoulos
et al., 2017a). All of the regions also appear to differ substantially from their hemispheric averages with the
differences being particularly large in the Deep South, Southern Ocean, East Pacific, and West Pacific regions.
The Northern Ocean is unique as only a few clusters even occur there, and these only show a minor bias.
While there is little geographic distance between the Deep South and Southern Ocean regions, they show
significant differences in some clusters, in particular Clusters 10 and 12, which leads to a large difference
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number in the title indicate the sum of the biases for the corresponding region. The color of a given bar indicates which cloud regime that cluster is associated
with: blue for tropical, red for marine, green for land based, black for mixed-layer, and magenta for stratocumulus. CRE = cloud radiative effect.
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Figure 8. Contribution to the overall longwave (LW) difference for each cluster. Each of the separate regions are identified in Figure 1. The black lines
and the number in the title indicate the sum of the biases for the corresponding region. The color of a given bar indicates which cloud regime that cluster is
associated with: blue for tropical, red for marine, green for land based, black for mixed-layer, and magenta for stratocumulus. Note that this plot has a different
scale along the vertical axis to the preceding plot. CRE = cloud radiative effect.

in their mean SW CRE (with the SW CRE in the observations being larger than that in the model). Within the
model, Cluster 10 starts to act as stratocumulus cloud, which when considered with the errors in Clusters 11
and 12 suggests that the flaws in the Deep South and Southern Ocean regions are dominated by represen-
tational issues related to stratocumulus cloud. In contrast to the Deep South and Southern Ocean, the North
and South Atlantic regions are relatively similar and show good agreement with the majority of the clusters
showing the same bias with the exception of Cluster 6. The East Pacific region shows problems with multi-
ple types of cloud including stratocumulus from Western North America and Tropical cloud from the central
Pacific. The West Pacific region faces a unique issue as the only region significantly impacted by cluster 5.

The LW results in Figure 8 show relatively simple behavior. Several of the regions are dominated by individual
clusters including Cluster 5 in the West Pacific, Cluster 10 over the Deep South and Southern Ocean, and
Cluster 9 in the majority of the regions. Given the magnitude of the LW errors associated with cluster 10 in the
Deep South or Southern Ocean, any attempt to address the issues with LW CRE in these regions should focus
on stratocumulus clouds. A similar approach should be followed in addressing issues within other regions,
although most other regions have issues with multiple clusters. It is also interesting to note that clusters that
have a positive bias in SW CRE over a given region have a corresponding negative bias in LW, although the
magnitude is often different. Therefore, when a cluster overestimates SW CRE values in the model, it also
overestimates LW CRE, suggesting that the model errors are interconnected.

To gain a greater understanding of the factors that cause the differences in Figures 7 and 8, these results are
decomposed into different terms following the process described in equation (4). The resultant LW and SW
CRE decomposition is shown in Figure 9 where each cluster has had the overall CRE differences attributed to
differences in the RFO, CRE, and the covariation of these two variables. The RFO component clearly dominates
the other two factors in every cluster suggesting that the cloud may be simulated well in GA7, but the rela-
tive proportions of the different types of cloud is a larger issue. The differences in CRE are the second largest
issue for the majority of clusters. The regional breakdown of these values are included in the supporting infor-
mation, showing minor regional variation with the RFO term consistently responsible for the majority of the
bias. These results agree with those shown in Mason et al. (2015), which identifies the RFO error as dominant.
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Figure 9. Decomposition of the overall cluster-based cloud radiative effect (CRE) error into separate components based on differences in relative frequency
of occurrence (RFO), CRE, and covariation between these two terms. Each bar represents the fraction of the absolute error associated with a particular
cluster. The RFO term is shown in red, CRE term in blue, and covariation term in green. Note that the two plots have different scales along the vertical axis.
SW = shortwave; LW = longwave.

The work of Tan et al. (2017) also uses the same technique and finds that the overall differences in precipitation
between model and observations are largely the result of differences in the precipitation term, suggesting
that this technique is valuable.

5. Discussion and Conclusion

By using the MODIS-derived clusters to analyze the GA7 output, differences between model and observations
are identified. The 12 clusters are then assigned to five different cloud regimes, simplifying the interpretation
of these differences. The evaluation of GA7 with regard to each of the cloud regimes is outlined below:

1. Tropical cloud (Clusters 1 and 2): The occurrence rate of this regime drops from 17% in the observations to
11% within the model (Figure 4). These differences manifest in the form of strong regional underestimations
of the occurrence rates of both clusters with very few regions showing an increased occurrence rate in
the model. The average LW CRE is too small in GA7, while the average SW CRE is too large (Figure 6). The
contribution these clusters make to the overall SW CRE bias is negligible except in the South Atlantic, West
Pacific, and East Pacific regions where they still only play a minor role (Figure 7). The restriction to these
particular regions is expected as these are the only regions where this regime is prevalent in either the
model or observations. Cluster 1 also makes an important contribution to the global LW bias and plays an
important role in the regions identified above (Figure 8).

2. Land-based cloud (Clusters 5 and 6): This regime shows a substantial increase in occurrence rate, rising
from 18% in the observations to 51% in GA7, expanding from land to include significant ocean coverage
(Figure 4). This regime shows relatively minor differences in both average LW and SW CRE (Figure 6), despite
the large difference in occurrence rate, which means a surprisingly small contribution to the global LW CRE
error. However, this regime makes major contributions to the overall SW CRE error over almost all of the
regions examined (Figures 7 and 8).

3. Marine cloud (Clusters 3, 4, 7, and 8): This regime shows a substantial decrease in occurrence rate, falling
from 33% in the observations to 3% in GA7, losing coverage over the tropics and midlatitudes while retain-
ing some minor coverage over the polar oceans (Figure 4). The clusters in this regime also show the largest
differences between average model and observational LW and SW CRE (Figure 6). From this regime only
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Cluster 4 has a significant contribution to the global SW CRE error and only plays a major role over the North
Atlantic (Figure 7). These clusters have a minimal impact on the differences in overall CRE despite the major
differences in RFO. This is due to the clusters’ small-average CRE values in both the model and observations.

4. Mixed-layer cloud (Clusters 9 and 10): The occurrence of this regime increases from 19% in the observations
to 23% within the model. These differences take the form of gains in Cluster 10 that exceed the losses in
Cluster 9 (Figure 4). Within the model, Cluster 10 shows large increases over subsidence regions and the
storm tracks while the losses in Cluster 9 appear to be mostly over land. This suggests that within the model,
stratocumulus is assigned to Cluster 10, while within the observations it is assigned to Clusters 11 and 12.
Clusters 9 and 10 show a relatively large average SW CRE bias, and Cluster 10 contributes significantly to
the LW bias (Figure 6). These clusters feature two of the largest contributions to the overall SW CRE bias and
always act in opposite directions(Figures 7 and 8).

5. Stratocumulus (Clusters 11 and 12): This regime shows almost no overall difference in occurrence rate as the
decreases in Cluster 12 in GA7 are compensated with increases in Cluster 11. These increases in Cluster 11
occur over the global oceans, while the decreases in Cluster 12 occur over the subsidence regions (mainly
the west coast of the Americas) and the polar oceans (Figure 4). This regime has only minor issues with
average SW CRE, while cluster 11 shows a consistent LW CRE bias (Figure 6). The contribution to overall SW
CRE from Cluster 12 is large over all regions, while Cluster 11 only has a particularly large impact over certain
regions such as the Southern Ocean and Deep South (Figure 7).

Together, these results demonstrate that the differences between the model and the observational CRE are
mainly due to the land-based, mixed-layer, and stratocumulus cloud regimes, while the tropical and marine
regimes only make minor contributions to the difference in CRE globally. However, when examined region-
ally, each of the regimes shows problems in at least a few regions. This issue is clearest in the case of the
Tropical cloud regime, which shows no bias in the majority of regions but has an impact in the East Pacific,
West Pacific, and South Atlantic regions. By examining the role that clusters play in a given region, unique
representation issues can be identified for each of the regions. Once the overall CRE error contributions were
calculated, they were decomposed into different terms representing the source of the error. This clearly estab-
lished the occurrence rates of the various clusters as the primary source of the differences in the overall CRE in
the observations and the model, in agreement with previous work focused on the Southern Ocean detailed
in Mason et al. (2015). When combined with the earlier results, this suggests that each of the clusters are sim-
ulated reasonably well and that the differences in CRE are the result of differences in the relative proportions
of the various clusters.

Examination of the results on a cluster-by-cluster basis shows that five of the clusters (4, 6, 9, 10, and 12) are
responsible for the majority of the differences observed. These clusters mostly have high occurrence rates
and cumulatively account for around 55% of the observational measurements and 70% of the model data.
Clusters 4, 9, and 12 show a relatively consistent bias over all the regions, while Clusters 6 and 10 vary con-
siderably across the regions. As there appears to be many regional factors that affect how a particular cluster
performs, comparisons should be made at a regional level as suggested by Leinonen et al. (2016). Cluster 11,
which is connected to stratocumulus cloud, highlights this problem with the global results showing minor
issues, while an examination of the Deep South and Southern Ocean regions highlights major model flaws
associated with this cluster. Due to the issues related to Clusters 10–12 this is likely the result of the repre-
sentation of stratocumulus cloud within the model. This issue has been clearly identified in the previous work
of Williams and Webb (2009), Bodas-Salcedo et al. (2012), and Kay et al. (2012), and to a lesser extent Haynes
et al. (2011). Other clouds may be included in these clusters such as nimbostratus or frontal cloud, which
could play an important role in establishing these biases. Previously, this type of information has been used
to target model development such as in Kay et al. (2016), which altered the model supercooled liquid water
scheme. Examination of the individual clusters also demonstrates how important it is to consider differences
in both RFO and CRE. For example, Cluster 7 shows a large average SW CRE difference but only makes minor
contributions to the overall CRE difference as it only has minor differences in occurrence rate. Within each of
the identified regions the overall differences in CRE between the model and observations can be attributed
to particular clusters. For example, the differences over the West Pacific region are almost entirely the result
of issues with Clusters 5, 6, and 9. Additionally, the problems with the SW CRE over the Deep South are shown
to be the result of Clusters 10 and 11.

The metric approach introduced by Williams and Webb (2009) and refined by Mason et al. (2015) has suc-
cessfully been expanded to show errors over particular regions, following Leinonen et al. (2016) and has then
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been used to identify issues with the representation of specific clusters. The clusters can then be linked back
to the physical cloud types, for example, Clusters 10–12 to stratocumulus or Cluster 6 to clear skies. The large
variance in cluster behavior between different regions suggest that the unique conditions of each region play
an important role. Examples of regional conditions that impact CRE include, but are not limited to, aerosol
composition (Oreopoulos et al., 2017a), cloud phase (Matus & L’Ecuyer, 2017), and position of hemispheric
jets (Grise & Polvani, 2014). By examining the links between the clusters and regional features, it is possible to
identify processes within the model that contribute to these errors. In particular, cloud phase has been identi-
fied as a important factor in determining the radiative properties of cloud (Matus & L’Ecuyer, 2017) and is likely
a good candidate for further research using these techniques. Given the importance of cloud vertical struc-
ture to radiative transmission (Yuan & Oreopoulos, 2013), there is also the possibility of extending this work to
examine the differences between the model and observational cloud structure following the methodology
of Oreopoulos et al. (2017b).
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