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Abstract In the last decade, climate mitigation policy has galvanized around staying below specified
thresholds of global mean temperature, with an understanding that exceeding these thresholds may result
in dangerous interference of the climate system. United Nations Framework Convention on Climate
Change texts have developed thresholds in which the aim is to limit warming to well below 2 °C of warming
above preindustrial levels, with an additional aspirational target of 1.5 °C. However, denoting a specific
threshold of global mean temperatures as a target for avoiding damaging climate impacts implicitly obscures
potentially significant regional variations in the magnitude of these projected impacts. This study introduces
a simple framework to quantify the magnitude of this heterogeneity in changing climate hazards at 1.5 °C
of warming, using case studies of emergent increases in temperature and rainfall extremes. For example, we
find that up to double the amount of global warming (3.0 °C) is needed before people in high-income
countries experience the same relative changes in extreme heat that low-income nations should anticipate
after only 1.5 °C of warming. By mapping how much warming is needed in one location to match the
impacts of a fixed temperature threshold in another location, this “temperature of equivalence” index is a
flexible and easy-to-understand communication tool, with the potential to informwhere targeted support for
adaptation projects should be prioritized in a warming world.

Plain Language Summary While the threshold of global mean warming which results in
damaging climate impacts is thought to differ significantly between different locations, quantifying
these differences has proven difficult for the scientific community. This paper introduces a simple tool,
called the “temperature of equivalence” index, which maps how much global warming is needed for one
location to match the effects of reaching a specific warming threshold in another. As an illustration of
the framework, we find changes to the severity of extreme heat events for low-income nations after 1.5 °C
of warming would not be seen for other regions of the world until after a global temperature rise twice as
high. By aggregating the temperature of equivalence index for previously incompatible measures of the
impacts of climate change, future work could enable a more holistic understanding of which nations will
have shared experiences in a warmer world, with potential benefits for adaptation planning as
a consequence.

1. Introduction

There is significant societal interest in understanding how climate change impacts will manifest themselves
in response to continued increases in global mean temperature (Seneviratne et al., 2016; Stott, 2016; Stott
et al., 2016). In the context of the development of future mitigation targets (Schleussner, Rogelj, et al.,
2016), there is also an enhanced need to more specifically understand how regional changes to weather
extremes and other climate-related hazards will manifest themselves in response to specific thresholds of
global mean warming (Hawkins et al., 2017; King et al., 2017; Mitchell et al., 2016). Following the signing of
the Paris Agreement in December 2015, there has been a new focus on the regional impacts associated with
“1.5° of warming above preindustrial levels,” not previously the focus of targeted scientific research (Mitchell
et al., 2016; Rogelj & Knutti, 2016; Schleussner, Lissner, et al., 2016). Of course, the question of whether the
exceedance of any specific threshold of global-mean warming translates to “dangerous interference” of
the climate system inherently simplifies potentially significant regional differences in the severity of such
impacts—or more precisely, the threshold of warming which would result in damaging local impacts may
differ significantly between different locations. However, resolving how different these “thresholds” are
remains poorly constrained and is thus the focus of this analysis.
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One method which has proven useful to characterize relative changes to future climate between different
locations around the world has been that of “spatial climate analogues.” Primarily used as a communication
tool (for example, http://bit.ly/2n1ubbF), this approach commonly considers what regions of the world might
today exhibit climatic conditions comparable to the projections expected for a different location under a
future warming scenario. Many papers have presented variations on this theme (Brown & Katz, 1995;
Hallegatte et al., 2007; Kalkstein & Greene, 1997; Pugh et al., 2016; Williams et al., 2007), each with different
caveats: The most recent example from Dahinden et al. (2017) found that up to 20% of today’s local climates,
when characterized based on seasonal cycles of average temperature and precipitation over land regions,
would disappear following an additional 2.0 °C rise in global temperatures.

This study presents a new framework motivated by the concept of spatial climate analogues, but with a focus
on assessing the level of dissimilarity in regional climate hazards following a given rise in globalmean tempera-
tures. Specifically, a climate model-based framework is used to identify howmany degrees of global warming
would be required for each individual grid cell around the world to reach the same threshold of emergent cli-
mate change as those experienced at 1.5 °C of warming for a specific location of interest. While nearly all pre-
vious approaches to spatial climate analogues keep the present-day climate fixed as a frame of reference, this
paper’s approach focuses on future warming thresholds as the target reference frame, thereby enabling a
clearer demonstration of regional variability in future climate change and related policy implications.

Using emergent increases in the frequency of heat and precipitation extremes as examples (sections 2 and 3),
section 4 will then discuss how an extended framework of comparing the emergence of climate change
impacts above background variability across regions can have clear benefits for decision makers worldwide.
Such benefits include (1) demonstrating that the emergent changes expected at some point in the future
with continued carbon emissions in one part of the world are in fact closely related to the changes being felt
in other regions of the world today (with the potential to then learn from the experiences of those places) and
(2) highlighting which regions should be the focus of more targeted support for adaptation planning, given
the severity of some changes which are projected to occur even if ambitious mitigation scenarios are
successfully achieved.

2. Data and Methods

For illustrative purposes, this study utilizes two extreme temperature and precipitation metrics from the
Expert Team on Climate Change Detection Indices (ETCCDIs, Sillmann et al., 2013): for temperature, we ana-
lyze the annual maxima of all daily maximum temperatures (hereafter TXx); for precipitation, we identify
annual maximum 1-day precipitation accumulations at each location (Rx1day).

To facilitate a like-for-like comparison of the changes expected in a multitude of different climatic variables
with continued warming, we focus on signal-to-noise (S/N) ratios for each individual variable. This normalizes
the magnitude of climate changes with respect to the amount of natural variability expected at a certain loca-
tion in the reference climate and thereby provides amethod of circumventing some difficulties that otherwise
arise when comparing metrics with different definitions and different units of measurement. However, the
underlying premise of identifying “temperatures of equivalence” could equally be applied for absolute
changes in TXx, and the importance of examining a variety of indices is discussed further in section 4.2.

For 23models contributing to the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012)
which provided sufficient data for the calculation of TXx and Rx1day (Table S1 in the supporting information),
time series of S/N ratios are calculated for each metric over the period 1861–2100, using “Historical” and
“RCP8.5” simulations concatenated together. Only a single ensemble member (r1i1p1) is selected from each
model. Following previously published methods (King et al., 2015, 2016), the signal of each variable at each
grid cell is calculated as the mean over a running 21-year time window, relative to the mean over the period
1861–1880. The noise of each variable is calculated for each grid cell within each model as the standard
deviation over 1901–2000, using Historical model simulations detrended with a simple linear fit. The S/N
ratios are calculated for each model at their native resolution first, before being interpolated to a common
2.5° × 2.5° grid to facilitate comparative analysis later.

The corresponding estimate of global mean temperature anomalies for each model is also calculated using a
21-year running mean, and with respect to an 1861–1880 baseline. It is noted here that global-mean
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temperatures are calculated simply as the area-weighted average of near-surface air temperatures over all
land and ocean regions in each model (that is, with no masking to specific regions with high
observational coverage).

Since information about climate change impacts associated with exceeding a specific threshold of global
mean warming will be more desirable for decision makers (Knutti et al., 2016; Rogelj & Knutti, 2016), we next
identify the 21-year period for which a global mean warming anomaly of 1.5 °C is exceeded within each
individual model and remains exceeded until the end of the time series (2100). The corresponding S/N ratio
for each of the two ETCCDIs is then extracted for this same 21-year period.

2.1. Defining the Temperature of Equivalence Index

To illustrate the “temperature of equivalence” (hereafter TE) index as a concept, we begin with a simple
demonstration using TXx and a region roughly encompassing India as a case study. Aggregating across all
land grid cells in the black rectangular box (8°N–35°N, 70°E–95°E) in Figure 1a, the S/N ratio of TXx changes
is found for each individual climatemodel at the point of 1.5 °C of warming. We then look at all other grid cells
worldwide separately and assess how much warming is required within that same model to produce the
same emergent increases in TXx as was found for India after 1.5 °C of warming. The map in Figure 1 demon-
strates the multimodel median amount of warming required for each grid cell to experience the same
changes in TXx as for India—that is, the TE with respect to changes at 1.5 °C (or TE1.5). As expected, one
can see that there are equal fractions of land with a TE1.5 just below (light blue) or above (yellow) 1.5 °C
within the black rectangle itself.

The right-hand panel presents another way of interpreting the spatial patterns TE1.5 for TXx relative to the
region of interest, showing the cumulative distribution of TE exposure for the global population.
Population data for both this and all subsequent figures have been taken for the year 2015 from the
Center for International Earth Science Information Network database (CIESIN, 2016). The population data
were first aggregated from the 0.25° × 0.25° spatial resolution provided, to the 2.5° × 2.5° resolution of the
climate model output. As can be seen by the individual lines shown for each CMIP5 model in Figure 1b, as
much as 20% of the global population experiences the same emergent changes in TXx after less than
1.0 °C of warming as is found in India after 1.5 °C, while all models show at least 65% of the global population
to have experienced the same changes after 3.0 °C of warming.

The remaining examples in this study do not consider the TE index with respect to a simple rectangular box
as the location of interest, but instead with respect to the aggregation of S/N ratios from all low-income
countries together, using classifications taken from the World Bank (2016, http://bit.ly/2bBWnzX; Figure
S10 in the supporting information). Similarly, instead of considering population exposure for the entire globe

Figure 1. (a) Multimodel median temperature of equivalence (TE) with respect to changes in TXx signal-to-noise ratios over
land regions in India at the 21-year period corresponding to 1.5 °C of global mean warming (with respect to 1861–1880).
(b) TE1.5 within each CMIP5 model, expressed as a cumulative distribution function for the global population, using
high-resolution gridded data for the year 2015. The dashed red line shows 1.5 °C of warming, which is the benchmark for
the changes considered in the region of interest. Inset statistics in (b) show the fraction of people which have a TE1.5 of less
than 1.0 °C or more than 3.0 °C (with best-guess estimates and a full model range presented respectively).
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as a way of presenting how the changes at 1.5 °C for one location compares with others (as with Figure 1b),
we will hereafter compare against those people who live in high-income nations (Figure S10). Not only does
this framework illustrate the versatility of the TE concept, but aggregating regional groups according to
shared socioeconomic characteristics helps to characterize similar levels of capability in addressing the
impacts of climate change (Frame et al., 2017).

2.2. Methodological Considerations

While the intention is primarily to illustrate practical examples of the TE concept, the decision to examine S/N
ratios for the chosen extreme climate indices is motivated by the multitude of studies which have placed an
increasing emphasis on interpreting the signal of regional climate change in the context of existing variability
over a given location (Diffenbaugh & Scherer, 2011; Fischer & Knutti, 2015; Frame et al., 2017; Harrington et al.,
2016; Hawkins & Sutton, 2012; King et al., 2016; Lehner & Stocker, 2015; Mahlstein et al., 2011). It is further
noted that this study only calculates S/N ratios at a given warming threshold from a high-carbon scenario
of future climate change (RCP8.5): Such a scenario, which crosses a wide range of temperatures, is a necessary
requirement for the framing of results presented in both sections 2.1 and 3. However, previous studies have
shown that, for many ETCCDIs, the response to the same increase in global temperatures is largely similar
across RCP scenarios—that is, scenario uncertainty across RCPs is significantly smaller than corresponding
model uncertainty (Harrington et al., 2016; Seneviratne et al., 2016; Wartenburger et al., 2017).

Finally, it is important to acknowledge that this framework could be easily applied to a variety of other
temperature thresholds—the 1.5 °C example has been simply chosen here to provide relevance for decision
making about the ambitious targets of the 2015 Paris Agreement. Equivalent results for 2.0 and 2.5 °C of
warming are presented in the supporting information.

3. Results
3.1. Example of Monotonic Climate Changes: Temperature Extremes

Figure 2 shows the patterns of TE when considering the multimodel median change in TXx S/N ratios follow-
ing 1.5 °C of global warming for all low-income nations aggregated together. As the left-hand panel reveals,
there is a notable latitudinal gradient in the amount of warming required to match this level of emergent
increase in heat extremes. For some lower latitudes, such changes have already been reached before
1.0 °C of warming (a threshold thought to have been already exceeded in 2017; Haustein et al., 2017), while
the vast majority of continental locations in midlatitudes require between 2 and 3.5 °C of warming to reach
these levels.

Figure 2. (a) Map of the multimodel median temperature of equivalence (TE) index, when comparing against the signal-to-
noise ratio of TXx expected for the average citizen of a low-income nation after 1.5 °C of warming. (b) TE1.5 for the
population of all high-income nation aggregated together, expressed as a cumulative distribution function using high-
resolution gridded data for the year 2015. The dashed red line shows 1.5 °C of warming; the white land regions showwhere
no “equivalent” emergence occurs by 2100 under RCP8.5; the thick blue line shows the multimodel median response;
the thin blue lines indicate the 16th–84th percent model spread. Inset statistics in (b) show the fraction of people which
have a TE1.5 of less than 1.0 °C or more than 3.0 °C.

10.1029/2018GL078888Geophysical Research Letters

HARRINGTON ET AL. 6675



When aggregating these spatial results from Figure 2a according to where people in high-income countries
live, clearer results begin to emerge. Specifically, we find in Figure 2b that the same amount of emergent
changes in temperature extremes felt by low-income countries after 1.5 °C of warming would be reached
instead for an equal fraction of high-income populations after 2.6 °C (1.9–3.0 °C) of warming. Another way
of interpreting this result is that the changes in extreme heat felt by the average citizen of a low-income
country after 1.5 °C of warming would not be felt by about 40% (16th–84th percentile range of 12%–51%)
of people living in high-income nations until well after double the amount of global warming (3.0 °C) is
reached. Such disparities are significant, and underscore how different the rates of emergent changes in
extreme heat can be for different locations (Figure S1a). Further versions of Figure 2 can be found in support-
ing information for several other global temperature thresholds and using a different metric of extreme heat
(TX90p)—all results show qualitatively comparable outcomes.

3.2. Impact-Relevant Climate Changes With Spatially Divergent Responses to Warming:
High-Precipitation Extremes

For a climatic variable which experiences monotonic changes in response to greenhouse gas emissions, like
extreme temperatures, the TE index can be well understood and interpreted in a relatively straightforward
way. Some interpretation difficulties do, however, arise when applying the TE framework to a variable for
which climate change may induce a decreasing or increasing signal of change, depending on the location
considered. To illustrate such an example, we replicate the analysis of Figure 2, but this time using S/N ratios
of annual-maximum 24-hr precipitation accumulations (hereafter Rx1day) at each grid point, instead of TXx.

First, it is important to highlight that for the majority of populated regions around the world, projections
show an increase in the intensity of daily-scale rainfall extremes to emerge after 1.5 °C of warming
(Figure S1b). When these changes for low-income countries are presented as a map of TE1.5 however
(Figure 3a), it becomes clear that there are many locations which have already seen the same emergent
changes in extreme rainfall (blue grid cells) as expected after 1.5 °C for the average citizen of a low-income
country, while such changes will never occur for other locations (white land regions). These disparities are
quantified more explicitly in Figure 3b: To a first-order approximation, half of all people in high-income coun-
tries experience the same amount of emergent increases in extreme rainfall after 1.0 °C as for inhabitants of
low-income countries after 1.5 °C of warming, while some 20% (10%–30%) of people will never see such
changes. This partly reflects the fact that several low-income countries span arid regions in Africa which show
very small S/N ratios (Figures S2 and S10); hence, many Northern Hemisphere regions experience equivalent
changes in extreme rainfall after much less warming.

These results are nevertheless still as informative as those for temperature extremes: People living in one
location can identify other places around the world which will experience a comparable increase in the sever-
ity of rainfall extremes after some threshold of global mean warming—it just so happens that the differences
in these projected signals of change are more geographically diverse than is the case for changes in extreme

Figure 3. Same as for Figure 2, but showing the patterns of TE1.5 when focusing on the emergent changes in Rx1day for
the average citizen of a low-income nation.
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heat. For example, those places in the high northern latitudes with robust projected increases in extreme
rainfall frequency (Figure S1b; Min et al., 2011) would not expect to find shared future experiences with those
arid regions of the world which anticipate negligible or even opposing signals of extreme precipitation
changes in the future (Pfahl et al., 2017).

4. Discussion
4.1. Potential Applications of the Temperature of Equivalence Framework

The examples provided in this study demonstrate two possible applications of the TE index: (1) providing a
means of comparing between two countries (or groups of countries), to determine what locations will
experience similar changes in response to some threshold of continued warming and thus have shared
interests in developing adaptation frameworks and (2) demonstrating how anomalous the emergent hazards
for a specific community may be after exceeding some threshold of global warming, especially when
compared to projections for the global population as a whole.

The TE framework also represents a powerful tool to highlight how a large fraction of the many potential
hazards anticipated with climate change are actually similar for many different regions around the world,
but with the important caveat that the amount of warming required for these changes to emerge will be dif-
ferent in different locations. The TE concept could therefore provide an effective framework to facilitate
integrated climate adaptation plans: For example, every individual country could calculate, for a range of
future global temperature thresholds of interest to local planners (such as 1.5, 2, 2.5 °C, or beyond), which
other countries (if they exist) best represent a similar level of emergent change in the present day. This would
then incentivize collaborative efforts between the two nations to prepare adaptation plans for this fast
emerging country, as it would also serve as a useful waypoint for the country which is anticipating similar
changing hazards in the coming decades.

4.2. Considerations for Extending the TE Framework to Other Impact-Relevant Metrics of
Climate Change

This approach to integrated adaptation planning could be examined for many metrics of a changing climate
for which the TE framework could be implemented. However, for the TE framework to be most successful,
scientists would need to provide calculations for a wide range of indices which characterize impact-relevant
climate hazards—similar to the examples of section 3—but without making any assumptions a priori about
what will be most useful for stakeholders, and instead leaving those choices to downstream decision makers
(Hewitt et al., 2017).

Even for the case of multiple temperature-related hazards in a warming world, the TE index for a 1.5 °C world
should be calculated for a range of metrics which capture both absolute and normalized changes for both
direct and wet-bulb temperatures, as each of these metrics is specifically relevant to different types of
heat-related hazards. For the case of direct heat stress, Im et al. (2018) demonstrate that the fraction of time
exceeding specific wet-bulb temperature thresholds of 28, 31, and 35 °C are important indices to consider, as
such levels constitute upper bounds of heat-regulating capabilities for the human body (Sherwood & Huber,
2010). Equally, multiple studies of nonambient temperature mortality rates show that individual cities have
optimal temperature bounds which are specific to their historical climate (Gasparrini et al., 2015; Tobías
et al., 2017), thus suggesting that deviations beyond historical familiarity (or S/N ratios in temperature) will
also be important indices for local stakeholders and health practitioners.

Impacts specifically assessed by the ISI-MIP project (Warszawski et al., 2014) or more targeted regional
modeling projects (Giorgi & Gutowski, 2015) are also possible candidates, with examples including
hydrological drought severity, how often growing season temperatures exceed optimum thresholds for
specific crop types, or even changes to freshwater availability. If specifically assessed using these
fit-for-purpose modeling frameworks, the potential to aggregate multiple climate change impacts under
the banner of the TE index could also help to alleviate difficulties in interpreting nonlinear or sigmoidal
patterns of change which might emerge with further warming (Ricke et al., 2016). By providing a method
which equates the relative speed of changes to this myriad of impact-relevant hazards in a warming world
under a consistent metric, the TE index could be used as a way to more accurately resolve which countries
will in fact experience the fastest and most severe effects from a specific N-degree rise in global mean
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temperatures and thus warrant targeted support from those countries which may experience relatively less
severe changes.

Other types of important physical climate changes are more difficult candidates to be assessed under the TE
framework: One such example is sea level rise. While Lyu et al. (2014) presented a useful “time of emergence”
analysis (Hawkins & Sutton, 2012) for regional sea level changes in the future, this approach may not be the
most informative in terms of comparing the relative impacts of changing coastlines in a future climate. A
more appropriate metric for a TE-based analysis might instead be what fraction of a country’s gross domestic
product or population (Hallegatte et al., 2013) are directly exposed to a 1-in-N-year coastal inundation event
with continuing warming—that way, the TE framework could then be easily used to show a like-for-like com-
parison between different locations worldwide.

For all of the above examples, we continue to emphasize that the specific and often value-laden (O’Brien &
Wolf, 2010) selection of which metrics of climate change are most relevant for use in a TE framework should
remain for local and regional decision makers to independently determine. However, by providing a broad
range of metrics (which is the subject of ongoing work), each of which are directly relevant to multiple
climate change impacts, we argue the TE index represents a potentially powerful tool for stakeholders.

4.3. Limitations

The framework proposed in this study has some methodological limitations which need to be carefully
considered—these primarily relate to whether the transient climate change scenarios currently available to
characterize TE1.5 are fit-for-purpose. Our analysis has made use of the high-emissions RCP8.5 scenario as
there is a necessary requirement for the future climate trajectory to span as wide a range of temperature
thresholds as possible. However, there are open questions about (1) how the impacts of an N-degree increase
in global mean temperatures are influenced by the emissions pathway taken to reach that threshold, such as
regional changes to aerosol emissions (Samset et al., 2018; Wang et al., 2017), as well as (2) whether reaching
a global temperature threshold in a transient scenario will generate the same climate impacts as for a case
where temperatures stabilize at that threshold (James et al., 2017). These remain open questions which could
influence the TE index for some individual locations and for some types of impacts and should thus be a
priority for future research.

5. Summary

The TE framework is a relatively simple and easy-to-understand method to characterize the dramatic
differences in regional climate hazards projected for future increases in global temperatures. This has been
applied to two examples of precipitation and temperature extremes, but we emphasize the potential value
of extending this framework to a range of climate change indices of interest to regional decision makers.
For our illustrative results using only one specific metric of characterizing heat extremes, even the most
aggressive mitigation scenarios can result in changes to the severity of extreme heat events for low-income
populations which would not be seen for other regions of the world until after a global temperature rise twice
as high. By aggregating the TE index for previously incompatible measures of the impacts of climate change,
future work could enable a more holistic characterization of how different regions of the world will
experience the impacts of a 1.5 °C warmer world and beyond. With an improved understanding of which
nations will share common experiences under future climate change, the TE framework may also help to
facilitate the prospect of joint adaptation plans for different countries worldwide.
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