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Abstract Modeling the shortwave radiation balance over the Southern Ocean region remains a
challenge for Earth system models. To investigate whether this is related to the representation of
aerosol-cloud interactions, we compared measurements of the total number concentration of sea
spray-generated particles within the Southern Ocean region to model predictions thereof. Measurements
were conducted from a container laboratory aboard the R/V Tangaroa throughout an austral summer
voyage to the Ross Sea. We used source-receptor modeling to calculate the sensitivity of our measurements
to upwind surface fluxes. From this approach, we could constrain empirical parameterizations of sea spray
surface flux based on surface wind speed and sea surface temperature. A newly tuned parameterization for
the flux of sea spray particles based on the near-surface wind speed is presented. Comparisons to existing
model parameterizations revealed that present model parameterizations led to overestimations of sea spray
concentrations. In contrast to previous studies, we found that including sea surface temperature as an
explanatory variable did not substantially improve model-measurement agreement. To test whether or not
the parameterization may be applicable globally, we conducted a regression analysis using a database of in
situ whitecap measurements. We found that the key fitting parameter within this regression agreed well
with the parameterization of sea spray flux. Finally, we compared calculations from the best model of
surface flux to boundary layer measurements collected onboard an aircraft throughout the Southern Ocean
Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES), finding good agreement overall.

1. Introduction
In the remote boundary layer of the Southern Ocean, continental sources of particulate matter such as black
carbon, terrestrial monoterpenes, dusts, and pollen contribute very little to the population of suspended
particulate (Murphy et al., 1998). As a result, the magnitudes of the direct and indirect shortwave radia-
tive effects from the suspended particulate within the region are largely driven by local, marine sources
(Carslaw et al., 2013; McCoy et al., 2015). There has been a considerable amount of work in recent years
to understand the excess of shortwave radiation reaching the ocean surface in the Southern Ocean within
climate-chemistry models (CCMs), especially regarding the representation of clouds within these models
(Bodas-Salcedo et al., 2014; Trenberth & Fasullo, 2010). Since hygroscopic particulate matter are a neces-
sary precursor to cloud formation, they can indirectly exert a substantial influence on the radiation balance
through modification of cloud brightness (Twomey, 1977) and cloud phase through the availability of ice
nuclei (DeMott et al., 2010).

The natural sources of airborne particles in the region are the production of sea spray-generated particles
(SSPs) from wind-wave interactions and ultrafine particles from the homogeneous nucleation of sulfuric acid
and other volatile vapors. However, the rate of production of SSPs remains an open problem: The number of
particles entering the atmosphere of a given droplet size and at a given wind speed has been shown to vary
by over an order of magnitude among existing parameterizations for the production of SSPs (Ovadnevaite
et al., 2014). If one also accounts for the uncertainties related to predicting the dependence of the surface
flux on the wind speed over the water, estimates for the intensity of the surface flux diverge further. As a
result, both the concentration and seasonal cycle of SSPs remain poorly constrained in the Southern Ocean
(Henzing et al., 2006; Revell et al., 2019). Several studies have shown that the lack of prediction accuracy
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for the flux of SSPs results in large biases between observed and modeled mass concentrations of SSPs in
the marine boundary layer (MBL), particularly in regions with cold waters (Grythe et al., 2014; Jaeglé et al.,
2011; Witek et al., 2016).

In general, sea spray is the dominant source of particulate matter in the Southern Ocean in terms of mass
(Murphy et al., 1998); however, during ice formation in coastal Antarctica, wind-blown frost flowers and
snow from sea ice can also become locally prominent sources (Kaleschke et al., 2004; Yang et al., 2008). Since
these particles are the largest in the region (Quinn et al., 2017), they are also a substantial contributor to
the local aerosol optical depth (AOD) (Shindell et al., 2013). While the contribution of SSPs to the regional
AOD is much more significant than its contribution to cloud albedo in the Northern Hemisphere, over the
Southern Ocean it is precisely the opposite (Ayash et al., 2008). This highlights that SSPs are a regionally
important component of cloud formation over the Southern Ocean. This is not surprising: SSPs are mainly
composed of highly soluble sea salt and so they are very efficient cloud condensation nuclei (CCN) (Petters
& Kreidenweis, 2007). While SSPs form only a small fraction of CCN globally, they can make up ∼65% of
CCN over the Southern Ocean (Quinn et al., 2017).

Recent studies have also shown that SSPs can act as ice nucleating particles (INPs), which encourage the
phase transition of cloud droplets to ice (DeMott et al., 2016; McCluskey et al., 2018). Since the Southern
Ocean is far removed from continental sources of INPs (e.g., dust), SSPs may be the only source of INPs
in the region. Ice nucleation sites within the droplets are likely a result of suspended amounts of organic
material within the sea surface microlayer which became entrained within the droplets during formation
(DeMott et al., 2016). However, organic materials form very little of the mass composition of the resulting
SSPs (Murphy et al., 1998); hence, the ice-nucleating potential of sea spray is very weak relative to continental
sources such as mineral dusts (McCluskey et al., 2018). Still, the capacity for SSPs to modulate cloud phase
represents an additional mechanism through which they can affect the local radiation balance.

While we have emphasized the potential radiative effects SSPs might have on the Southern Ocean region,
there are other ways in which they can perturb the Earth system. Several studies have shown that the largest
SSPs are nonnegligible contributors to the exchange of latent and specific heat across the ocean-atmosphere
interface (Ortiz-Suslow et al., 2016; Richter & Sullivan, 2013). In a bulk flux model of the air-sea exchange of
heat, Andreas et al. (2015) showed that these large, “shear” sea spray droplets accounted for fluxes of sensible
and latent heat on the same order of magnitude as fluxes directly from the ocean-atmosphere interface
at high wind speeds (U10 > 15 m s−1). Observations and model simulations have shown that the rate of
momentum transferred from the atmosphere to the ocean starts to decrease after a critical threshold wind
speed is passed (30 m s−1; Bao et al., 2011; Hwang, 2018; Powell et al., 2003). Theoretical work has suggested
that this change is driven by the exchange of sensible heat between the largest droplets and the atmosphere,
which become more abundant at high wind speeds (Bao et al., 2011). This leads to considerable biases in
the prediction of storm intensity (Bao et al., 2011). The ability to predict the abundance of SSPs is therefore
vital to fully understanding many macroscopic processes within the region.

To constrain the potential role sea spray may have on the regional radiation budget, it is first necessary to
validate current parameterizations for its flux against in situ observations of its abundance. However, there
is currently a dearth of such observations over the Southern Ocean. In this work we present measurements
of the total number concentration of airborne particles recorded throughout an austral summer voyage to
the Ross Sea aboard the R/V Tangaroa. We use these measurements to test existing empirical parameter-
izations which describe the flux of particles from wave breaking events in open seas. Measurements from
instruments onboard the High-Performance Instrumented Airborne Platform for Environmental Research
(HIAPER) throughout the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study
(SOCRATES) were also used to validate these parameterizations. Since the winds throughout both of these
experiments included the extremes of surface conditions encountered at the air-sea interface, understand-
ing the flux of SSPs in this highly dynamic region will be valuable in constraining both current and future
flux estimates.

2. Methods
2.1. Measurements
The voyage aboard the R/V Tangaroa began on 9 February and ended on 21 March 2018 departing and
returning to Wellington, New Zealand (41◦17′ S, 174◦46′E). The bulk of the voyage was spent in waters south
of 60◦S, with 17 days of the voyage spent in seas between 60–70◦S and 13 days of the voyage south of 70◦S.
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In situ measurements of boundary layer aerosol were conducted from a container laboratory on the shelter
deck of the R/V Tangaroa (2 m a.s.l.). The instruments within the container laboratory drew a continuous air
sample through 40 m of 100 mm ID antistatic tubing (EOLU PU; IPL Ltd.) from the mast of the R/V Tangaroa
(15 m a.s.l.). For the purposes of this study, we have primarily focussed on measurements from the passive
cavity aerosol spectrometer probe (PCASP-100X; Droplet Measurement Technologies) with supplementary
data from a differential mobility particle sizer (DMPS; TSI). The PCASP-100X is an optical particle counter
which measured the number concentration size spectra of particles within the air sample. The instrument
is capable of detecting particles with optical diameters between 0.1 and 3.0 μm in 30 size bins at 1 Hz. The
DMPS measured the number concentration size spectra of particles within the air sample with mobility
diameters between 0.02 and 0.3 μm in 32 size bins once every 10 min. We have corrected the number con-
centration measurements according to calculations of the sampling and transport efficiency from Brockman
(2001). These calculations accounted for anisokinetic sampling conditions, diffusion of the particles toward
the tube walls, and gravitational settling of the particles. All of these calculations were based on empirical
parameterizations of these losses in a turbulent flow. Across the spectrum of sizes we measured, we estimate
that the total sampling efficiency was at most 93%, but no less than 90%.

Throughout the voyage, a cavity ring-down spectrometer (Picarro G2301) measured mole fractions of CO2,
CH4, and H2O from a separate sampling line. The sampling line of the cavity ring-down spectrometer was
within 5 m of the main sampling line used for the particulate sampling. Intrusions of ship exhaust from the
rear of the ship would have been sufficiently well-mixed in the turbulent air around the ship superstruc-
ture so as to affect both sampling lines. We used a threshold limit of 405 ppm of CO2 to detect when ship
exhaust contaminated our main sampling line. This threshold was well above the trend line of the [CO2]
mole fraction time series. After removing these outliers, we used 1 Hz subsamples of the particle num-
ber concentrations to calculate 1-min averages of the number concentration size spectra and its standard
deviation. When the standard deviation of the 1 Hz samples deviated significantly from Poisson counting
statistics, the sample was removed.

This study also incorporated measurements from the New Zealand Met Service's Automated Weather Station
(AWS) aboard the R/V Tangaroa. The AWS anemometer was positioned at 22.5 m a.s.l. on the mast of the
ship, while the rest of the AWS was positioned at 15 m a.s.l. The AWS measured: atmospheric pressure,
atmospheric temperature, relative humidity, wind speed, wind direction, and accumulated precipitation.
Measurements of the average relative wind speed and wind direction were made using a pair of ultrasonic
anemometers (Gill WindSonic) and reported at 1-min intervals. The measurements of wind speed were
corrected according to directionally dependent acceleration factors, based on a model of air flow around the
R/V Tangaroa's superstructure (Popinet et al., 2004; Smith et al., 2011). The wind speeds were then corrected
according to the ship heading and speed to derive the true wind speed and wind direction. Finally, the
acceleration-corrected, true wind speed at 22.5 m was scaled to the 10-m reference level using the bulk flux
algorithms developed from the Coupled Ocean-Atmosphere Response Experiment (COARE) (Edson et al.,
2013). In employing the COARE bulk flux algorithms, we have not accounted for differences in the height
of the AWS due to heave with respect to mean sea level, which may amount to ±4 m in heavy seas. If for a
given measurement the pitch or roll of the ship was significant with respect to the mean wind vector, then
the measured wind speed would have been systematically biased low. However, throughout the voyage, the
pitch of the ship was <20◦, and so these corrections would be less than 6%.

Measurements of the boundary layer number concentration size spectra were also conducted onboard HIA-
PER, a modified Gulfstream V aircraft, from 16 January to 24 February 2018. These measurements were
part of the SOCRATES experiment. Over the course of the experiment, there were 15 flights, which departed
and returned to Hobart, Australia. We have focused on the flights which coincided with our observational
record, namely Research Flights (RF) 10–15 which took place between 7 and 24 February 2018. Two Ultra-
high Sensitivity Aerosol Spectrometers (UHSAS; Droplet Measurement Technologies) were used throughout
the experiment to measure the number concentration size spectra of particles within the surrounding air;
however, for this study we focused solely on the measurements from the UHSAS mounted inside of the
aircraft. The UHSAS sampled ambient air via a counterflow virtual impactor inlet mounted outside of the
aircraft. This ensured that the internal flow rate of the UHSAS was isokinetically matched to the exterior
flow around HIAPER. Like the PCASP-100X, the UHSAS is an optical particle counter which can detect par-
ticles with optical diameters between 0.059 and 1.022 μm in 100 discrete size bins at 1 Hz. It was determined
that corrections to the number concentration size spectra from the additional ram pressure of sampling the
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aerosol from a moving aircraft would amount to less than 1%. This was substantially less than the observed
variability in both the number concentration time series and the volume flow rate of the pump that pro-
vided the flow through the UHSAS. For each flight we identified 3–6 periods when the altitude was stable,
there was little precipitation, and the observed number concentration size spectra were relatively stable. In
each of these periods, we averaged the number concentration size spectra over 5–10 min. This resulted in
28 unique measurements between 69 and 6,100 m a.s.l, 17 of which were in the boundary layer.

2.2. FLEXPART-WRF
The FLEXible PARTicle transport model (FLEXPART), FLEXPART-WRF, is a Lagrangian particle disper-
sion model designed to model particle trajectories within mesoscale meteorological fields from the Weather
Research and Forecasting Model (WRF) (Brioude et al., 2013). For this study, we used meteorological fore-
casts from the real-time Antarctic Mesoscale Prediction System (AMPS) (Polar Meteorology Group, Byrd
Polar and Climate Research Center, 2018). AMPS uses a variety of data sources to constrain these fore-
casts, including near-real-time sea ice concentrations measured from the Special Sensor Microwave/Imager
radiometer and sea surface temperature (SST) data from the National Center for Environmental Predic-
tion (NCEP) (Bromwich et al., 2005). Initial and boundary conditions for AMPS were specified according
to near-real-time forecasts from the NCEP Global Forecasting System (Bromwich et al., 2005). We used the
AMPS output with the widest spatial coverage, domain 1, which has a horizontal resolution of 24 × 24 km,
a vertical resolution of 61 𝜂 levels, and a temporal resolution of 3 hr. The AMPS forecasts used throughout
this study were downloaded online (https://www.earthsystemgrid.org/project/amps.html).

We initialized 100,000 particle trajectories from the geographic location of the R/V Tangaroa every 3 hr to
match the temporal resolution of AMPS. Additional simulations were run for every hour in between the
meteorological time steps if the R/V Tangaroa had entered a new grid cell in the AMPS domain. These two
criteria resulted in 651 unique simulations. To trace losses due to deposition throughout the simulation,
FLEXPART assigned each particle a unit mass distributed over a log-normal size distribution. To match
our observations, we centered this distribution around a geometric dry diameter of 0.20 μm (Dp,g = 0.4μm
at 80% relative humidity), with a geometric standard deviation of 2.00, and a dry density of 1.84 g cm−3.
FLEXPART-WRF used the discretized Langevin equation to describe the turbulent dispersion of these parti-
cles through the atmosphere in reverse time with an adaptive time step strictly less than 180 s. The particles
were advected through the meteorological fields specified by AMPS from the time of measurement up to
5 days prior in reverse time. Throughout the trajectory, losses of particle mass due to dry deposition were
calculated according to the resistance method (Hicks et al., 1987). To improve these calculations we modi-
fied FLEXPART-WRF to account for hygroscopic particle growth according to the ambient relative humidity
(Gerber, 1985), since changes in particle size can significantly affect a particle's settling velocity and dry depo-
sition velocity. FLEXPART-WRF also accounted for losses of particle mass from precipitation and droplet
activation. Within clouds, FLEXPART-WRF calculated the scavenging rate of particles from droplet activa-
tion according to the parameterization of Hertel et al. (1995). For scavenging by precipitation below cloud,
loss rates were estimated from the following empirical relationship:

Λ = AIB
s (1)

where the scavenging rate, Λ, was calculated as a function of the rain-equivalent snow intensity, Is
(mm hr−1), and user-set scavenging coefficients, A and B. While fairly good representations of particle scav-
enging from rain exist in the literature, there is substantially more uncertainty with regard to the scavenging
from snow (Slinn, 1977). Recent parameterizations of below-cloud scavenging in the non-WRF version of
FLEXPART recommend applying an empirical fit to a set of snow scavenging rates measured in southern
Finland (Grythe et al., 2017; Kyrö et al., 2009). However, this parameterization does not explicitly account
for increases in scavenging with increasing snow intensity. We observed that the differences in scavenging
rates (Kyrö et al., 2009) observed across the particle size spectra were small compared to the difference in
median snow scavenging rates they observed between their median observed snow intensity (0.2 mm hr−1)
and peak snow intensity (5 mm hr−1). We used the median scavenging rates and snow intensity values they
reported to estimate the following scavenging coefficients for snow: A = 4×10−5 and B = 0.43. For reference,
the typical values used by FLEXPART-WRF for rain are 5×10−6 and 0.62, respectively. Together with the dry
deposition velocity, the mass concentration loss rate could be described at any point in the simulation by the
following

dm
dt

= −
( vd

h
+ Λ

)
m (2)
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where m is the mass of the particle, vd is the dry deposition velocity, and h was the height of the layer in
which dry deposition occurred (30 m a.s.l.).

In reverse mode, FLEXPART-WRF calculated the residence time of the particles within the lowest 100 m
of the atmosphere. The residence time calculation was weighted by the local air density and the residual
mass of the particles within the grid cell. The weighted residence time was normalized by the initial mass
of the particles such that the resulting residence time accounted for losses from wet and dry deposition as
described above. Finally, FLEXPART-WRF integrated the weighted residence time over the duration of the
meteorological time step for each grid cell of the AMPS domain.

2.3. Quantifying the Contribution of Sea Spray
Previous studies have shown that in pristine marine environments, the contribution of SSPs to the number
concentration size spectra can be characterized by a single log-normal number concentration size distribu-
tion (Modini et al., 2015; Quinn et al., 2017). Distributions derived from this method have been shown to
agree well with number concentration size spectra measured during laboratory wave-breaking experiments
and the “canonical sea spray size distribution” derived from other studies (Lewis & Schwartz, 2004; Prather
et al., 2013). This also agrees with the mass composition of the particles measured in the Southern Ocean
boundary layer during the ACE-1 campaign, which found that particles larger than 0.3 μm were composed
almost entirely of sea salt (Murphy et al., 1998). We applied this methodology to our measurements of the
number concentration size spectra from the PCASP-100X; that is, we fit a number concentration size spectra,
dn(d log Dp)−1, of the following form:

dn
d log Dp

= N√
2𝜋 log(𝜎g)

exp
⎡⎢⎢⎢⎣−

log2
(

Dp

Dp,g

)
2log2(𝜎g)

⎤⎥⎥⎥⎦ (3)

where Dp is the particle diameter, N is the total number concentration of particles, Dp,g is the geometric
mean diameter of the distribution, and 𝜎g is the geometric standard deviation of the distribution. After
fitting, the retrieved spectra were corrected to a relative humidity of 80% (Gerber, 1985). In the process of
fitting, the geometric standard deviation (𝜎g) of the mode was fixed to a value of 2, which best fit our data.
While Modini et al. (2015) and Quinn et al. (2017) allowed 𝜎g to freely vary in their regression analysis, the
variance-covariance matrix from our regression indicated that the resulting parameters were significantly
correlated, since the data very weakly constrained 𝜎g.

To calculate the total number concentration of sea spray from the FLEXPART-WRF residence time, we
assumed that the surface flux of SSPs also followed a log-normal distribution:

𝜕𝑓

𝜕 log Dp
= F√

2𝜋 log(𝜎g)
exp

⎡⎢⎢⎢⎣−
log2

(
Dp

Dp,g

)
2log2(𝜎g)

⎤⎥⎥⎥⎦ (4)

where 𝑓 is the partial particle flux in m−2 s−1, F is the total particle flux in m−2 s−1, and Dp is the particle
diameter.

The most widely used empirical approach for constraining the particle flux from the ocean surface is the
“whitecap method.” It results from the following assumptions: first, that the total flux of particles entering
the atmosphere from the ocean surface can be determined from the fractional surface coverage of whitecaps,
W (“whitecap fraction”); second, that the whitecap fraction can be adequately determined from the 10 m
scalar wind speed over the ocean, U10; and third, that the shape of the SSP size distribution is not a function
of wind speed. Laboratory and field experiments have shown that all of these assumptions are reasonable
(Monahan & Ó Muircheartaigh, 1980; Monahan et al., 1986). Hence, the total number of particles entering
the atmosphere, F, can be predicted from just the 10-m wind speed, U10:

F = E
𝜏

W(U10)

F = 𝛼W(U10)
(5)

where W is a function that models how the surface coverage of whitecaps increases as a function of wind
speed, E is the number of particles produced per whitecap, and 𝜏 is the lifetime of the whitecaps. Since we
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can only hope to constrain one constant prefactor, we combine both E and 𝜏 into a single parameter 𝛼, which
we assume to be constant. Historically, the whitecap function W has been assumed to be a simple power
law, based on early field observations of whitecap formation (Monahan, 1971). However, it has since been
well-established that whitecaps do not form in the open ocean until the 10-m wind speed exceeds 3–4 m s−1,
which is a feature that cannot be described by a power law model (Bell et al., 2017; Callaghan et al., 2008;
Schwendeman & Thomson, 2015). We considered three other wind-dependent models of the surface flux
that incorporated a threshold wind speed below which very few SSPs are produced:

WPL = a1U10
a2

WC(U10) =

{
b1
(

U10 − b2
)3
, U10 ≥ b2

0, U10 < b2

WF(U10) = 1 − Φ

(
c1√
U10

)

WLLPL(U10) =
d1U10

d2

1 +
(

U10
d3

)−d4

(6)

where ax, bx, cx, and dx and are empirical parameters determined from regression analysis with our obser-
vations, and Φ is the error function. The first function, WPL (PL = Power Law), is as previously introduced.
The second function, WC (C = Cubic), has been used to match more recent field observations of whitecaps
(Callaghan et al., 2008; Schwendeman & Thomson, 2015)). The third function, WF (F = Fetch), was based
on the theoretical work of Snyder and Kennedy (1983), who developed a model of whitecap production
based on a fetch-dependent threshold for wave breaking. While the work of Xu et al. (2000) showed that
the whitecap fraction could be fully determined from the model of Snyder and Kennedy (1983) if both the
wind speed and fetch were known, the fetch was typically unlimited throughout our observation period. In
high fetch regimes, the coverage of whitecaps is only very weakly dependent on variations in fetch (Piazzola
et al., 2002). As a result, we treated c1, which is a function of the fetch, as a free parameter to be determined
through regression, since a single value should accurately describe the data. The last function, WLLPL (LLPL
= Log-Logistic Power Law) combined the power-law with a log-logistic curve to emulate the threshold mech-
anism. While WPL, WC and WLLPL predict that the surface flux will continue increasing as a function of
wind speed, the Fetch model (WF) is the only model which predicts that there exists an upper bound on the
particle flux at high wind speeds.

There has also been some debate as to how the temperature of the sea water might moderate whitecap
formation (Callaghan et al., 2014; Grythe et al., 2014; Jaeglé et al., 2011; Märtensson et al., 2003; Sellegri
et al., 2006; Zábori et al., 2012). This was tested directly with SST data from NCEP, which was available from
the AMPS forecasts. Thus, the model of surface flux was expanded to:

F =𝛼(Tw)W(U10)
𝛼(Tw) =𝛼0(1 + 𝛼1Tw)

(7)

where the coefficient 𝛼, which describes both the lifetime of the whitecaps and the number of particles pro-
duced per whitecap, is now a function of the SST, Tw. Note that, in reality, parameters 𝛼0 and other scaling
coefficients within W (e.g., a1, b1, d1) cannot be determined independently, so they are combined into a sin-
gle parameter for each regression (e.g., a∗

1 = a1𝛼). Finally, we assumed that the surface flux was well-mixed
within the lowest atmospheric grid cell in FLEXPART-WRF, h = 100 m. Following these assumptions, the
number concentration of particles in the SSP mode, N̂, was calculated according to

N̂i =
1
h

0

∫
−t0

∫ ∫
O

F(1 − Cice) di (8)

where t0 was the length of the FLEXPART-WRF simulation, Cice was the fractional surface coverage of sea
ice, O denotes that the integral was only integrated over oceans, and i was the map of footprint residence
times for the observation i.
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Figure 1. (a) The hourly 10 m scalar wind speeds from the AMPS forecasts were compared to the corrected wind speed
(see section 2.1) observed on the R/V Tangaroa. (b) The hourly 10 m wind direction.

A nonlinear least squares regression analysis optimized the set of parameters for each surface flux model,
W , being tested. Parameter optimization was achieved with the Gauss-Newton algorithm, where the
goodness-of-fit was measured by the Nash-Sutcliffe model efficiency coefficient (NSE):

NSE = 1 −

m∑
i=1

(
Ni − N̂i

)2

m∑
i=1

(
Ni − N̄

)2
(9)

where m was the total number of observations and N̄ represents the average of every measurement of Ni
within the data set (Nash & Sutcliffe, 1970). To account for differences between the number of parameters
between models, we also calculated the Akaike Information Criterion (AIC), which penalized models with
more parameters (Akaike, 1974):

AIC = 2k + m log

(
1
m

m∑
i=1

(
Ni − N̂i

)2
)

(10)

where k was the total number of parameters for a given model. The best model of surface flux was the model
which minimized the AIC.

3. Results
3.1. Comparisons Between Surface Meteorological Measurements and Model Forecasts
To demonstrate that the transport simulations produced a meaningful link between the observations and
surface fluxes, it was necessary to first validate the Antarctic Mesoscale Prediction System's meteorologi-
cal fields against the record of observations from the Automated Weather Station (AWS) aboard the R/V
Tangaroa. As described in section 2.1, the AWS measured wind speeds at 22.5 m, which were corrected to
the 10 m reference height according to the COARE 3.5 bulk flux algorithms. The corrected wind speeds
were compared to the 10-m wind speeds predicted by the AMPS forecasts by matching the location of the
R/V Tangaroa to the nearest grid cell within AMPS. This comparison is presented in Figure 1. The corre-
lation coefficients calculated for both the wind speed (R = 0.81) and wind direction (R◦ = 0.78) between
observations and forecasts were both significant (p < 0.01), where R◦ represents the circular correlation
coefficient (Fisher & Lee, 1986).

Despite the good agreement we found between the measured and forecast winds, there was no spatiotem-
poral correlation between the rain-equivalent snow rate measured aboard the R/V Tangaroa and the
precipitation fields forecast by AMPS. However, the climatological distribution of the rain-equivalent snow
rate was at least consistent between measurements and forecasts. This suggests that even if precipitation was
not spatially consistent with our observations, it was at least as frequent, and of the right intensity within the
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Figure 2. (a) A map of the cumulative near-surface residence time derived from FLEXPART-WRF particle dispersion
simulations. The model simulated the transport of 1 × 105 particles with a dry diameter of 0.2 μm in reverse time from
the time of measurement to 5 days prior. The near-surface residence time is simply the total amount of time the particle
spent below 100 m above ground level. Within FLEXPART-WRF the transport of the particles was calculated according
to meteorological forecasts from the Antarctic Mesoscale Prediction System (AMPS). (b) The same map, but now for a
48-hr. simulation. The colored line in both panels marks the track of the R/V Tangaroa throughout the voyage.

AMPS forecasts. While comparing localized, discrete events like precipitation can be challenging, even com-
paring our measurements to grid cells within 100 km and within 6 hr of the R/V Tangaroa measurements
did not produce a significant correlation.

3.2. Source-Receptor Modeling
In Figure 2a we show the cumulative 5-day, near-surface, residence time for all of the source-receptor simula-
tions described in section 2.2. The track of the R/V Tangaroa throughout the voyage has also been shown for
reference. As expected, the near-surface residence time was greatest near the R/V Tangaroa. This indicated
that our measurements were most sensitive to surface fluxes near the ship. To understand how dry depo-
sition might govern the concentration of SSPs, we also ran several FLEXPART-WRF simulations in which
the dry deposition velocity was set to a fixed rate. However, the consistent turbulence of the atmosphere
over the Southern Ocean meant that the simulated particles were often very evenly dispersed throughout
the boundary layer. As a result, dry deposition was severely limited throughout all of the simulations. Pre-
dicted surface flux sensitivities within these simulations only began to diverge after 1–2 days had elapsed
in simulation time; however, by then the residence time was typically less than 5% of what it was near the
ship. Hence, dry deposition was not a strong factor controlling the concentration of SSPs.

It was evident from Figure 2a, however, that our observations near the Ross Ice shelf were sensitive to non-
marine sources. The fraction of the time the particles spent above nonmarine surfaces throughout their
5-day simulations increased rapidly as the R/V Tangaroa approached Cape Adare, Antarctica. Throughout
this period we observed strong, southerly winds, which brought continental, Antarctic air across the Ross
Ice Shelf. Intrusions of continental air into the MBL are a common phenomenon within the region (Coggins
& McDonald, 2015; Coggins et al., 2014). Near the end of the observation period, after 18 March 2018, the
source-receptor simulations showed that our measurements were also sensitive to surface fluxes from the
South Island of New Zealand. This was a direct result of the strong northerlies we observed throughout our
return transect.

As we identified in section 3.1, the rain-equivalent snow rates forecast by AMPS were not well correlated
with snowfall intensity measured onboard the R/V Tangaroa. While the frequency of occurrence of these
events seemed consistent, it is important to note that the wet deposition scheme used by FLEXPART-WRF
implicitly assumed that in-cloud activation events only occurred within a precipitating cloud. Hence, the
frequency of in-cloud scavenging events was almost certainly underestimated within the source-receptor
simulations. As Hertel et al. (1995) note, the magnitude of the loss of particles to in-cloud activation is almost
always greater than either below-cloud scavenging or dry deposition. In fact, an activation event is always
strong enough to terminate a particle trajectory within FLEXPART-WRF. Therefore, it was expected that
the source-receptor modeling vastly overestimated the near-surface residence time by continuing to advect
particles that should have been completely scavenged by cloud. However, a lack of boundary layer cloud
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Figure 3. Number concentration size spectra measured from the
PCASP-100X (0.1–3 μm) and the DMPS (0.02–0.3 μm) on 20 February 2018
at 1300 UTC. Particle sizes have been corrected to 80% relative humidity
(Gerber, 1985). Number concentrations for particles larger than 0.5 μm
were used to constrain a single log-normal number concentration size
distribution (“SSP mode”). This method has been used by other researchers
(e.g., Modini et al., 2015 and Quinn et al., 2017) to constrain the
contribution of SSPs to the total number concentration size spectra. The
Aitken and accumulation modes are shown for reference.

within the simulation did not stem from this issue alone. It has been well
established that there is currently a large shortwave radiation bias over
the Southern Ocean (Bodas-Salcedo et al., 2014). Observations of cloud
base height from radiosondes and ceilometer measurements through-
out this same voyage showed that the shortwave radiation bias is related
to the lack of low-level cloud and fog predicted within atmospheric
models (Kuma et al., 2019). Therefore, it is reasonable to expect that
even with an improved in-cloud activation scheme (e.g., Grythe et al.,
2017), FLEXPART-WRF still would have underestimated the frequency
of droplet activation events. This would have a substantial impact on our
source-receptor calculations, resulting in significantly less ocean surface
area contributing to the integral in equation (8). To visualize this effect,
we have also shown the cumulative near-surface residence time for a
2-day simulation in Figure 2b, instead of the 5-day simulation shown in
Figure 2a. This is addressed further in section 3.4.

3.3. Number Concentrations of Sea Spray
In Figure 3 we show an example modal analysis of a number concentra-
tion size spectrum measured by the PCASP-100X and DMPS aboard the
R/V Tangaroa. The size spectra were used to constrain three log-normal
“modes” which represented the entire size distribution. The largest of
these modes, the SSP mode, is so-named as it has been shown to be com-
prised almost solely of SSPs (Modini et al., 2015; Quinn et al., 2017).
At each hour of observation throughout the voyage we constrained the
SSP mode from the spectral measurements shown in Figure 3, resulting
in the time series of the total number concentration of SSPs shown in
Figure 4. In general it was sufficient to constrain the SSP mode from just
the PCASP-100X measurements, so the measurements from the DMPS
were not used in this study, but are shown for reference. Throughout the
entire voyage, we observed the median and standard deviation of the geo-
metric mean diameter of the SSP mode to be 0.4 ± 0.05 μm at a relative

humidity of 80%. This agreed well with the observations of Quinn et al. (2017) in the Southern Ocean. This
also agreed with the median dry diameter of SSPs measured from laboratory-generated waves, 140–200 nm
(Prather et al., 2013), since SSPs are twice as large at 80% relative humidity compared to dry conditions
(Gerber, 1985).

In Figure 4a, the total number concentrations of SSPs and the 10-m scalar wind speeds measured are shown
from the beginning of the voyage, 9 February 2018, until 18 March 2018. Throughout the voyage, there were
several periods when either fog or precipitation was observed at the ship. As expected, fog very efficiently
scavenged the particles in the SSP mode through droplet activation processes, much more so than precip-
itation. However, the lack of observed particles during such events meant that the SSP mode could not be
constrained. This is particularly evident around 5 March 2018. In the last three days of the voyage, 18–21
March 2018, we encountered strong northerly winds along the coast of New Zealand, which transported
terrestrial particles to the R/V Tangaroa. The addition of these non-SSPs resulted in number concentration
size spectra from which the SSP mode could not be constrained. As a result, measurements when fog or
precipitation was observed at the ship, or when there was a significant influence from New Zealand were
excluded from the regression analysis presented in the following section.

In Figure 4b we also show the 10-m wind speed throughout the same period of measurement. We observed
that when winds were light (U10 < 4 m s−1) the total number concentration of particles in the SSP mode
was no more than 10 cm−3 and had a median of 7 cm−3. Light-wind periods (U10 < 4 m s−1) occurred
14% of the time in upwind conditions, as weighted by the near-surface residence time. However, during
a light-wind period on 12 March 2018, there appeared to be no particles at all. This agreed well with the
transport modeling in Figure 2, which showed that during all light-wind periods, except the period occurring
on 12 March, the particles had a significant near-surface residence time over Antarctica. While the boundary
layer over Antarctica is generally a very pristine environment, human activity from research stations near
the Ross Ice shelf and exposed mountain faces both represent potential sources for the concentration of
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Figure 4. (a) The average hourly number concentration of sea spray particles is shown for the entire campaign with
periods of fog (RH > 98%) or rain (>1 mm hr−1) marked by the shaded areas. (b) The hourly 10-m wind speed.

particles observed at low wind speeds. In the regression analysis that followed, the median concentration
of SSPs observed at low wind speeds was removed from the observations (except for the period around 12
March 2018). After removing this background concentration, we calculated the hourly averaged number
concentration of particles in the SSP mode to be 9 cm−3, with a maximum of 62 cm−3.

Figure 5. The total number concentration of sea spray-generated particles
is shown as a function of altitude over the course of several flights aboard
HIAPER, (RF 11–15). The ranges within each altitude bin show the
minimum and maximum number concentration observed. Flights RF
11–15 took place on the following days, in order: 17, 18, 20, 21, and 24
February 2018.

In Figure 5 we show the total number concentration of SSPs derived from
the UHSAS number concentration size spectra onboard HIAPER. These
measurements were taken over the course of several flights in February
2018 to illustrate the range of concentrations observed within each 1-km
bin. The measurements within 1 km of the Earth's surface were always
determined to be below cloud (if any cloud was present) and within the
boundary layer. In contrast, all other bins were determined to be above
cloud (if any cloud was present) and above the boundary layer. From
Figure 5 we can also identify that there was always at least 5–10 cm−3 of
SSPs in the boundary layer, which is consistent with the measurements at
low wind speeds on board the R/V Tangaroa. As expected, there were also
very few SSPs above the cloud, indicating that nearly all of these particles
had been consumed during cloud formation.

3.4. Regression Analysis
Predicted SSP concentrations can be obtained by integrating equation (8);
however, we have already identified that particle losses from in-cloud
scavenging represented the greatest uncertainty to our source-receptor
modeling. To address this within the regression analysis we allowed the
simulation length, t0, to vary as a free parameter within equation (8). In
effect, this allowed the regression to estimate the return rate of a droplet
activation event within a boundary layer cloud (e.g., fog or marine stra-
tocumulus) or a significant precipitation event (>10 mm hr−1). Either of
these events would have efficiently scavenged the particle, thereby termi-
nating its trajectory. This approach is similar to the Statistical Wet Depo-
sition method used by other researchers, which prescribes the length of
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Table 1
The Values Listed in This Table are the Relative Likelihood That a Given Parameterization of
Surface Flux Correctly Predicted the Observed Number Concentration of Sea Spray-Generated
Particles Relative to the Best Parameterization

Surface flux parameterization WPL WC WF WLLPL

F(U10) <1 ×10−3 <1 ×10−3 1 0.2
F(U10,Tw) <1 ×10−3 <1 ×10−3 0.6 <1 ×10−3

Note. These values were calculated from the difference between the Akaike Information Crite-
rion (AIC) of each parameterization and the AIC of the best parameterization (AICb) according
to the following: exp(−0.5(AIC − AICb)) (Burnham & Anderson, 2002). The AIC measures the
log-likelihood that a given surface flux parameterization minimizes the residual sum of squares
between predicted and observed concentrations while also penalizing parameterizations which
include large numbers of parameters (Akaike, 1974). See equation (6) for parameterization
definitions. PL = Power Law; C = Cubic; F = Fetch; LLPL = Log-Logistic Power Law.

time it takes a surface flux of particles to fully mix into the boundary layer after a precipitation event or
cyclone (e.g., Ovadnevaite et al., 2014).

In Table 1 we have calculated the relative likelihood that a given surface flux parameterization fit the data
as compared to the best parameterization, WF . We used the relative probabilities in Table 1 to compare two
parameterizations: for instance, modeling the flux with WF and a function of SST was only 60% as likely to
optimally fit our data as using WF alone. We also found that regardless of the surface flux parameterization,
the optimal simulation length, t0 was 48 ± 3 hr. This is similar to the “filling time” (Ovadnevaite et al., 2014)
used to characterize surface fluxes of SSPs from their measurements in the North Atlantic. The filling time
is a characteristic time scale used in the Statistical Wet Deposition Method for determining sea spray fluxes
from a concentration time series (Lewis & Schwartz, 2004). Definition of the filling time varies by author. In
Ovadnevaite et al. (2014), they interpret the filling time as “...the time between the cyclone formation and
subsequent arrival to [the measurement location]” instead of “the time since the last precipitation event as
considered in Lewis and Schwartz (2004).” The filling time we determined is consistent with the average
time that elapsed between the passage of seven separate cyclones we encountered throughout March 2018.
These cyclones provided widespread high winds and boundary layer cloud, resulting in high fluxes, but
relatively short lifetimes for any suspended particulate. Hence, our finding is consistent with the definition
of filling time given by Ovadnevaite et al. (2014).

According to the AIC, the best parameterization for the surface flux of SSPs, F, used the fetch parameteri-
zation for whitecaps, WF (Snyder & Kennedy, 1983; Xu et al., 2000):

𝜕𝑓

𝜕 log Dp
= F√

2𝜋 log(2)
exp

⎡⎢⎢⎢⎣−
log2

(
Dp

0.4

)
2log2(2)

⎤⎥⎥⎥⎦
F =𝛼WF(U10)
𝛼 =3.6 × 107

WF(U10) =1 − Φ

(
6.5√
U10

)
(11)

where Dp is the particle diameter in μm at a relative humidity of 80%.

In Figure 6a we show the model-measurement residuals for the best parameterization of surface flux. The
model-measurement residuals have been color coded according to the average SST. The average values of
SST were weighted by the 2-day, near-surface residence time. On average, the predicted concentrations did
not appear to be biased positive or negative. However, a recent study by Jaeglé et al. (2011) showed that
particle fluxes may significantly depend on SST. Changes in SST result in changes to the water viscosity.
This is thought to modify the length of time for the whitecap to dissipate, 𝜏, which is part of the constant,
𝛼. Hence, in order to compare to their result, we fit a linear correction term for the constant 𝛼 presented in
equation (11) as a function of the SST, Tw, finding

𝛼(Tw) = 3.6 × 107(1 + 0.024Tw) (12)
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Figure 6. (a) Predicted concentrations of sea spray generated particles from the best parameterization of surface flux
are compared to measurements from two observation platforms: a PCASP-100X aboard the R/V Tangaroa and the
UHSAS onboard HIAPER. The best parameterization for the surface flux, F, of these particles was a function of the
wind speed over the ocean surface. Each model-measurement pair is colored according to the average SST, weighted by
the near-surface residence time. (b) As in (a) but for a parameterization of surface flux which incorporated a linear
function of SST in addition to the wind speed dependence.

The model-measurement residuals of the temperature-corrected parameterization, are shown in Figure 6b.
From Table 1 we can see that this did not substantially improve model fidelity. In both Figures 6a and 6b we
have also shown the model-measurement pairs for the SOCRATES observations within the boundary layer.
Since these measurements were not included within the regression framework, the good agreement in both
of these figures provides a measure of confidence that equation (11) produces reasonable results within the
Southern Ocean region.

In Figure 7a we show the predicted flux of SSPs from each of the models in equation (6) as a function of
near-surface wind speed. The total particle flux predicted by Gong (2003) has also been shown for reference.
In Figure 7b we have compared the linear function of SST we recovered from the regression analysis to
the polynomial function fit by Jaeglé et al. (2011). We have shifted the values of the polynomial function
so that it matches our linear function at Tw = −2 ◦C. The slope of our linear function predicts that SST is
not as significant a control of SSP surface flux as shown by Jaeglé et al. (2011). This may be a result of the

Figure 7. (a) The best parameterization of the total surface flux of sea spray-generated particles, WF , is compared to
calculations from the Gong (2003) parameterization. (b) The linear bias correction function found by the regression is
compared to the function reported by Jaeglé et al. (2011), where their function has been shifted vertically to match the
linear bias correction function at T = −2 ◦C. The shaded region shows how uncertainty in the retrieved regression
parameters propagated to prediction uncertainty.
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Table 2
The Nash-Sutcliffe Model Efficiency Coefficient Between the Number
Concentration of SSPs Predicted by a Given Surface Flux Parameterization
and the Observations Conducted Aboard the R/V Tangaroa

Surface flux parameterization NSE (t0 = 48 hr) NSE (t0 = 120 hr)
Gong (2003) <0 <0
Jaeglé et al. (2011) 0.22 <0
Equation (11) 0.67 0.52

Note. The time, t0, is the length of time for which the Lagrangian particle
dispersion parameterization simulated the movement of SSPs back in time.
A negative value for the NSE implied that the mean of the observations was
better at predicting the observed variance than the given parameterization,
whereas a value of 1 would imply a perfect model-measurement fit.

distribution of our measurements across different SST regimes since 78% of our observations were related
to waters in a narrow temperature range (−2–0 ◦C). Hence, there would be little improvement to either the
NSE or AIC for these samples. Still, as shown in Figure 7b, the bias correction curve presented by Jaeglé
et al. (2011) is clearly outside of the uncertainty bounds for the modest temperature dependence we observe
within our data set.

Finally, we compared the NSE for the best parameterization we found within our regression framework
to two different parameterizations of SSP surface flux. The NSE is generally equivalent to R2, but can also
become negative when the average observed concentration provides a better fit to the data than the proposed
parameterization. From Table 2 it is clear that equation (11) predicted concentrations of SSPs that were more
consistent with our observations than predictions from either the Gong (2003) or the Jaeglé et al. (2011)
parameterizations. Comparisons showed that the Gong (2003) parameterization produced too many SSPs at
all wind speeds.

For reference, we also performed the regression for the entire 5-day simulation. In all of the parameteriza-
tions presented, the NSE decreased significantly for the longer simulation, consistent with our hypothesis
that in-cloud droplet activation was not accurately simulated. In addition, surface fluxes predicted by WF
when constrained by the 5-day simulations were strictly smaller than surface fluxes predicted by WF when
constrained by the 2-day simulations, for all wind speeds. Therefore, our finding that the parameterization
of Gong (2003) overpredicted the surface flux of SSPs was robust.

3.5. Metaanalysis of Whitecap Data
In order to assess the conditions under which the parameterization presented above may be applicable,
we analyzed global whitecap data from the literature. In Figure 8b we have amalgamated 527 in situ
ship-borne and tower observations of the surface coverage of whitecaps as a function of the 10-m wind
speed, U10 (Callaghan et al., 2008; Bell et al., 2017; Brumer et al., 2017; Jia & Zhao, 2019; Norris et al., 2013;
Schwendeman & Thomson, 2015; Stramska & Petelski, 2003; Sugihara et al., 2007; Xu et al., 2000). Studies
published after the year 2000 were used since they all employed some form of automated image processing.
This meant that each whitecap measurement was a result of >102 images, a necessary minimum to have a
convergent mean (Callaghan & White, 2009). The spatial coverage of these studies is shown in Figure 8a,
indicating that there is a good degree of coverage across surface temperature regimes within the database.
In Figure 8b we have shown three parameterizations for the whitecap coverage from the literature overlying
the in situ measurements (Callaghan et al., 2008; Hwang, 2018; Monahan & Ó Muircheartaigh, 1980). We
used the AIC to compare the existing parameterizations shown in Figure 8b to the fetch model, which was fit
to the data via nonlinear least squares regression. We found that the fetch model for whitecap development
captured the variability in the database best, with the relative likelihood that the other models accurately
captured the variability being <10−3. It also did so with a continuous function, whereas the other models
were piece-wise. The best fit for the whitecap data was as follows:

WF = 1 − Φ

(
6.2√
U10

)
(13)

We also sought to validate the dependence of SSP fluxes on SST. However, SST data within the works cited
were either not included or simply summarized as a range of values encountered. Still, most voyages made
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Figure 8. (a) The spatial extent of shipborne and tower whitecap observations within the database assembled for the whitecap metaanalysis. Studies where the
coordinates of the observations were not specified all took place in the North Atlantic. (b) The fractional coverage of the sea surface by whitecaps as a function
of 10-m wind speed.

their measurements within a fairly narrow SST band. Hence, we could test whether or not there was any
dependence by using a voyage-average SST for each study. Using the AIC as a measure of the goodness of fit,
we found that SST did not improve the regression. This is evident by visually comparing the observations of
Jia and Zhao (2019), which took place in extremely warm seas (Tw ∼ 28 ◦C), to the rest of the data points.

4. Discussion
4.1. Meteorological Measurements
In the previous section, we presented total number concentrations of SSPs within the Southern Ocean
marine boundary layer as measured from two separate measurement platforms. These were compared to
estimations of the total number concentration of SSPs derived from a source-receptor analysis. To assess the
validity of the meteorological fields used within the source-receptor analysis, we compared the near-surface
winds forecast by AMPS to our observations aboard the R/V Tangaroa. We found that the near-surface winds
forecast by AMPS compared favorably to our observed winds with respect to both magnitude and direction.
Previous studies have found large biases between AMPS forecasts and the true, local winds over the com-
plex coastal topography of the Antarctic coastline (Bromwich et al., 2005; Jolly et al., 2016). However, ocean
waves have much less surface roughness in comparison to the coastal topography of Antarctica, which would
suggest that this may not be as substantial an issue over the ocean.

While the precipitation fields forecast by AMPS did not correlate well with our measurements, the clima-
tological distribution of precipitation events within AMPS was consistent with our observations. However,
within FLEXPART-WRF a lack of precipitation “trickled up” to the cloud layer: in the current version of
FLEXPART-WRF, clouds are only present within a simulation if they are precipitating. As a result, scav-
enging of SSPs from in-cloud activation was likely poorly modeled within the AMPS–FLEXPART-WRF
framework. As our own observational record showed, SSPs were strongly scavenged by boundary layer
cloud (e.g., fog), particularly through 15–17 February and 4–6 March 2018. It is useful, however, to recall
that clouds over the Southern Ocean are not very well represented within modern atmospheric models
(Schuddeboom et al., 2019; Trenberth & Fasullo, 2010). Current era atmospheric models systematically
underpredict the amount of low-lying cloud and fog relative to the true cloud observed over the Southern
Ocean (Kuma et al., 2019). Hence, even if a state-of-the-art microphysical parameterization of in-cloud scav-
enging had been present in FLEXPART-WRF, it is likely that the scavenging of sea spray still would have
been underestimated.

4.2. Source-Receptor Modeling
Once we had established that there was a missing sink of sea spray within our source-receptor framework,
it was necessary to decouple this sink from each of the parameterizations of surface flux we tested within
the regression analysis. This was accomplished by allowing the simulation length to vary as a free param-
eter within the regression analysis. The simulation length can be interpreted as the average length of time
since a boundary layer in-cloud activation event (e.g., fog or low-cloud). From Table 2 it is evident that our
observations were better reproduced for a fixed simulation length of 2 days, rather than the 5 days originally
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simulated. This agreed well with the “filling time” of 1.5–2 days used by Ovadnevaite et al. (2014) to con-
strain the surface flux of sea spray in the North Atlantic. While setting a voyage-wide simulation time may
have been a gross approximation, it was likely the only approach in light of the present systematic cloud
biases over the Southern Ocean.

4.3. Regression Analysis
By constraining the missing sink of sea spray within our model framework, we could finally compare how
well the near-surface wind speed and SST predicted our observational record. We found that the fetch
parameterization presented by Xu et al. (2000) and Snyder and Kennedy (1983) performed the best in our
comparison as measured by the NSE and the AIC. The parameterization, WF , is so-named since the param-
eter c1 is a function of the fetch. In our analysis we have assumed that this parameter was constant, since
fetch does not significantly influence the degree of whitecapping in open seas (Hsu, 1986; Piazzola et al.,
2002). Later, when we performed a similar regression analysis with a database of whitecap coverage obser-
vations, we found a slightly smaller value for c1. When we compared equation (11) to equation (13), we
found that c1 retrieved from the whitecap regression was 6.2 ± 0.2, which was consistent with the value
of 6.5 ± 0.2 we retrieved from the SSP regression. The sensitivity of WF means that using a value of 6.5 in
equation (11) will underestimate whitecap coverage globally and subsequently result in underestimations
of sea spray fluxes. However, we can compare to the value for c1 retrieved when we only consider South-
ern Ocean whitecap data from Brumer et al. (2017) (c1 = 6.4± 0.1). Combined with the goodness of fit to
the SOCRATES data (Figure 7a), this provides a secondary measure of validation for the parameterization
over the Southern Ocean. We can only conclude that for a global study, a value for c1 of 6.2 may be more
appropriate. For Southern Ocean specific studies a value for c1 of 6.5 should be used.

Finally, we compared results from two other parameterizations for the surface flux of SSPs to our obser-
vations. We found that neither the Jaeglé et al. (2011) nor the Gong (2003) parameterization could predict
the concentration of SSPs we observed over the Southern Ocean as well as equation (11). This is con-
nected to how the Gong (2003) parameterization (which Jaeglé et al., 2011 rescaled) scales the surface flux
of SSPs with increasing wind speed. Within this parameterization, the scaling is estimated via a power
law relationship between the surface coverage of whitecaps and near-surface wind speed (Monahan &
Ó Muircheartaigh, 1980). However, as we show in Figure 8b, the parameterization presented by Monahan
and Ó Muircheartaigh (1980) results in consistent overestimations of the whitecap coverage. These overes-
timations propagate through the SSP flux parameterization of Gong (2003) and lead to the overestimations
in concentrations we observe. In addition, the power law predicts that there will always be a flux of sea spray
from the ocean surface, despite it being well established that whitecaps do not form until the wind speed
over the ocean exceeds 3–4 m s−1. Even the rescaled Gong (2003) parameterization presented in Jaeglé et al.
(2011) did not match our observations well, either.

4.4. The Effect of SST
To understand differences between whitecapping in different regions, previous research has focused on
wave parameters and SST. As Sugihara et al. (2007) and Goddijn-Murphy et al. (2011) have shown, there is
a marked difference between observations of whitecaps in a pure wind sea versus a swell dominated sea.
Indeed, when we fit WF to the whitecap data from Sugihara et al. (2007) we retrieved a value for c1 of 6.1 ±
0.1 in a pure wind sea (indicating higher spatial coverage of whitecapping) compared to 6.7 ± 0.1 when the
winds were following swell or counter swell (indicating lower spatial coverage of whitecapping). This could
potentially explain the difference between the value of c1 we retrieved from our measurements and the one
retrieved from the entire whitecap database. However, conversely, in a satellite-derived whitecap database,
Albert et al. (2016) found that whitecaps were not dependent on wave parameters, but were actually mod-
estly dependent on SST. They noted that the lack of dependence on wave parameters may have been a result
of using wind history as a proxy for wave age and spatial averaging. However, we found that there was no
dependence on SST within the database of in situ whitecap observations.

Of course, even if SST does not affect the fractional coverage of whitecaps, it can still affect the surface flux
of particles through changes to viscosity. Results from laboratory studies, however, are mixed: while two
studies have clearly shown that the surface flux of sea spray should increase in warmer waters (Märtensson
et al., 2003; Sellegri et al., 2006), others found that differences in seawater composition (Callaghan et al.,
2014) and wave characteristics (Callaghan et al., 2012) could be much more important. Other laboratory
results have even shown that increases in water temperature led to decreases in sea spray fluxes (Zábori
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et al., 2012). To test whether or not changes in SST affected our own observations, we used SST as a second
independent variable within the regression analysis. We found that the impact to the model-measurement
fit was more modest than predicted by Jaeglé et al. (2011) (see Figure 7b) and that the parameterization
which only used wind speed (equation (11)) performed just as well. As we noted, this may have been a result
of making observations in a very narrow range of SSTs, which would result in very small changes to the
regression metrics we analyzed. However, from Figure 6b we can see that the model-measurement residuals
did not appear to be significantly biased from the 1:1 line, even at warm temperatures.

Ultimately, we should be cautious when implementing temperature correction functions for SSP fluxes.
Consider that field observations have already clearly shown that the presence of swell inhibits the surface
fraction of whitecaps for a given wind speed (Sugihara et al., 2007). Hence, global climatologies of swell
could potentially explain the latitudinal trends in SSP flux expected by Jaeglé et al. (2011): swell rarely occurs
in the tropics (where fluxes are expected to be higher), whereas swell is frequently present at high latitudes
(where fluxes are expected to be lower) (Jiang & Chen, 2013). As a result, the resulting bias correction curve
(Jaeglé et al., 2011) derived from in situ and satellite observations of aerosol may be partially dependent on
the presence (or absence) of swell. Yet the curve attributed the latitudinal variations in flux necessary to fit
their observations completely to variations in SST. Our own observations, which were made exclusively in
the presence of swell, showed that the dependence of SSP fluxes on SST was much weaker than anticipated
by Jaeglé et al. (2011), leading to a very negligible effect on model performance. We conclude that a more
comprehensive global study of sea spray which fully controls for upwind wave and SST conditions is needed
in order to decouple these two effects. In the interim, models should be cautious in implementing functions
which could potentially overexaggerate radiative feedback loops.

4.5. The Direct Radiative Effect
As the goal of this study was to understand how SSPs might influence the local radiation budget, it would
be useful to evaluate whether or not changes to the parameterization of SSP fluxes result in substantial
changes within existing CCMs. A recent study comparing the wintertime AOD over the Southern Ocean
found that current era parameterizations (e.g., Gong, 2003) of sea spray within a CCM resulted in overesti-
mations of the AOD relative to satellite observations (Revell et al., 2019). However, in the austral summer,
the opposite was observed: namely, a lack of particles formed from the nucleation of sulfate gasses resulted
in underestimates of AOD. Within this same study, the parameterization of surface flux, WPL, was imple-
mented within the CCM to better constrain the contribution of SSPs to the total particle population (Revell
et al., 2019). While WPL was not the best function determined by this work, it was similar in form to the
Gong (2003) currently implemented within the CCM being studied, so it was an easy substitution. Since WPL
had a Nash-Sutcliffe coefficient of 0.6 it also produced results that were consistent with equation (11). It is
important to note that WPL was used to rescale the size distribution of the Gong (2003) parameterization,
so any changes would be related to differences in the scaling function and not to differences between size
distributions. Results conclusively showed that the more conservative estimates of the surface flux of SSPs
generated by WPL completely removed the bias in wintertime AOD that was previously observed. There-
fore, we are confident that the parameterization for the surface flux of SSPs presented in equation (11) will
result in better predictions of the abundance of SSPs within the Southern Ocean region. More importantly,
Revell et al. (2019) show that it helps disentangle compensating errors in predicting AOD over the Southern
Ocean. These errors arise from uncertainties in predicting sea spray particle abundance and uncertainties
in the more complicated gas-phase and aqueous-phase chemistry modules, which produce sulfate particles
from volatile marine precursors like dimethylsulfide.

As we have emphasized throughout this study, the MBL over the Southern Ocean region is home to the
strongest surface winds over open ocean on Earth (Young, 1999). Surface winds also appear to be getting
stronger: At Macquarie Island, winds have increased in intensity by 3 cm s−1 per year from 1973–2011,
with satellite data showing that winds over the Ross Sea increased by 0.5–1% through 1991–2008 (Hande
et al., 2012; Young et al., 2011). Within the Ross Sea region, this increase is related to the deepening of
the Amundsen Sea low, an area of climatologically low pressure in the Southern Ocean which influences
regional winds, sea ice extent, and temperature (Coggins & McDonald, 2015; Raphael et al., 2016). As we
show throughout this study, sea spray has a highly nonlinear relationship with wind speed. Given their
large contribution to the CCN population (10–65%; Quinn et al., 2017), AOD (Murphy et al., 1998; Revell
et al., 2019), and cloud phase (McCluskey et al., 2018) over the Southern Ocean, these particles can have a
significant buffering effect on the local climate. We would therefore encourage future studies interested in
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climate projections for the Southern Ocean to make use of equation (11) when predicting the surface flux
of SSPs.

5. Conclusions
In this study, we described and optimized an existing parameterization for the surface flux of SSPs based
on the 10-m wind speed in equation (11). Within our regression framework we found that the dependence
of SSP fluxes on SST was very weak in the temperature range of our observations (Tw < 12 ◦C) and that it
did not help to constrain additional variability in our data set. An external database of previously published
whitecap observations was exploited to test this parameterization and found no temperature dependence at
all. While others have shown that temperature-dependent flux parameterizations seem to explain known
latitudinal variations in SSP flux, the correction functions derived from such an analysis could potentially
be a proxy for latitudinal variations in wave characteristics. Given the potential links between SSPs and the
Southern Ocean radiation budget, we should be cautious to add feedback loops where none may exist.

Finally, the parameterization presented in this study is already being used to model the AOD and concen-
tration of CCN in the region. Research has shown that the new parameterization vastly improved regional
calculations of AOD, compared with previous parameterizations which overpredicted the surface flux of
SSPs (Revell et al., 2019). We recommend that studies interested in aerosol-cloud interactions implement the
parameterization as it has been shown to better constrain the contribution of SSPs to the CCN population.
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