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Abstract This study explores the application of the self-organizing map (SOM) methodology to cloud
classification. In particular, the SOM is applied to the joint frequency distribution of the cloud top pressure
and optical depth from the International Satellite Cloud Climatology Project (ISCCP) D1 data set. We
demonstrate that this scheme produces clusters which have geographical and seasonal patterns similar
to those produced in previous studies using the k-means clustering technique but potentially provides
complementary information. For example, this study identifies a wider range of clusters representative of
low cloud cover states with distinct geographic patterns. We also demonstrate that two rather similar
clusters, which might be considered the same cloud regime in other classifications, are distinct based on
the seasonal variation of their geographic distributions and their cloud radiative effect in the shortwave.
Examination of the transitions between regimes at particular geographic positions between one day and
the next also shows that the SOM produces an objective organization of the various cloud regimes that can
aid in their interpretation. This is also supported by examination of the SOM’s Sammon map and correlations
between neighboring nodes geographic distributions. Ancillary ERA-Interim reanalysis output also allows
us to demonstrate that the clusters, identified based on the joint histograms, are related to an ordered
continuum of vertical velocity profiles and two-dimensional vertical velocity versus lower tropospheric
stability histograms which have a clear structure within the SOM. The different nodes can also be separated
by their longwave and shortwave cloud radiative effect at the top of the atmosphere.

1. Introduction

A wide range of possibilities exist for evaluating the quality of the cloud representation in climate models and
understanding the properties of clouds from satellite observations. Many previous studies have assessed the
representation of clouds and their radiative effects in general circulation models (GCMs) with most evaluations
being separated into tests of the model climate or case studies. Jakob [2003] identified that the evaluation
of cloud parameterizations with either highly averaged climatological information or information from indi-
vidual case studies has serious drawbacks. In particular, the climatological averaging process can hide issues
because of compensating errors and the identification of representative case studies can be difficult. For
example, the global cloud radiative forcing may perform well in a model because of compensating errors in
the temporal frequency and radiative properties of different cloud types [Webb et al., 2001; Williams and Webb,
2009]. Thus, climatological analysis can identify first-order problems but may miss subtler errors.

Mixtures of these methodologies and additional analysis approaches have therefore been discussed. In
particular, Jakob [2003] advocates the use of “intelligent” ways of averaging data, so that the general charac-
teristics of certain cloud systems remain intact even when a large number of cases are averaged. The three
most common methods used in this context are the derivation of weather states [Jakob and Tselioudis, 2003],
compositing cloud properties based on specific ranges of dyanamical parameters [Tselioudis et al., 2000; Bony
et al., 2004] and cyclone compositing [Lau and Crane, 1995; Field and Wood, 2007]. The weather states (WS)
or regimes methodology relies on clustering satellite cloud data, most commonly using the k-means clus-
tering technique and then classifying the model output in a similar way. The relationship between the WS
radiative properties, geographic and seasonal occurrence derived from observations, and the model output
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are then compared to identify sources of errors. The second method attempts to explicitly link clouds and
the large-scale atmospheric circulation. Bony et al. [2004] link cloud types and cloud radiative forcing in the
tropics to the large-scale vertical motion of the atmosphere, identified by the vertical velocity at 500 hPa
(𝜔500 expressed in hPa/d). The large-scale tropical circulation is then categorized into a series of dynamical
regimes corresponding to different values of 𝜔500. A number of studies have followed this approach, such as
Su et al. [2008] and Medeiros and Stevens [2011]. Classification of cloud properties using pressure anomalies
has also been used. For example, Tselioudis et al. [2000] examined the quantitative relationship between mid-
latitude atmospheric dynamics and the properties of the midlatitude clouds in the Northern Hemisphere. The
final methodology uses dynamical information to composite data relative to particular structures, cyclone
compositing which places satellite data and model output into a coordinate system defined relative to
low-pressure centers being particularly popular.

In this study, joint histograms of cloud top pressure versus optical depth (joint histograms from this point
forward) derived by the International Satellite Cloud Climatology Project (ISCCP) [Rossow and Schiffer, 1991,
1999] are utilized in a self-organizing map (SOM) clustering scheme to test the utility of this clustering
technique. The joint histograms provide a simple statistical representation of a satellite scene and have been
widely used to evaluate GCMs [Williams and Webb, 2009; Mason et al., 2015] and to understand the makeup
of clouds globally and regionally [Tselioudis et al., 2000; Jakob and Tselioudis, 2003; Marchand et al., 2010;
Tselioudis et al., 2013]. An important point to note in later analysis is that the ISCCP output has been suggested
to underestimate low-level cloud. This issue likely occurs because the retrieval infers cloud top pressure from
cloud top temperature, and an atmospheric profile and stratocumulus clouds often exist under temperature
inversions which are poorly represented in the atmospheric profiles [Marchand et al., 2010]. However, all satel-
lite instruments and their retrievals have their strengths and weaknesses [Stubenrauch et al., 2013] and the
intent of this work is to test the usefulness of the SOM scheme for future model evaluation efforts.

The usage of cluster analysis to form cloud regimes or weather states to determine the frequency and geo-
graphic position of different cloud types has become widespread with the k-means clustering methodology
being applied to ISCCP [Jakob and Tselioudis, 2003; Rossow et al., 2005; Williams and Webb, 2009; Marchand
et al., 2010; Oreopoulos and Rossow, 2011; Bodas-Salcedo et al., 2012; Zelinka et al., 2012; Klein et al., 2013;
Tselioudis et al., 2013; Mason et al., 2015; Rossow et al., 2016], Multiangle Imaging Spectroradiometer (MISR)
[Marchand et al., 2010], Moderate Resolution Imaging Spectroradiometer (MODIS) [Williams and Webb, 2009;
Marchand et al., 2010; Oreopoulos et al., 2014; Bankert and Solbrig, 2015; Oreopoulos et al., 2016], and CloudSat
data [Zhang et al., 2007; Sassen and Wang, 2008]. We will compare the results of the application of the SOM
analysis in this paper to these previous results with particular reference to geographic structure, seasonal
variation, and meteorological context.

Recent work by Muhlbauer et al. [2014] has applied an artificial neural network classification scheme to MODIS
cloud observations to characterize the properties of marine low-level clouds on a global scale. This expands on
previous work in Wood and Hartmann [2006] which examined specific regions in the northeast and southeast
Pacific. However, Muhlbauer et al. [2014] is the only paper to the authors’ knowledge that has previously
used a neural network classification of cloud data on a global scale. That work classifies a specific cloud type
(stratocumulus) based on a more complex range of parameters than those used in the present study. In
particular, the neural network uses 32 metrics linked to the power spectra and 40 values linked to the prob-
ability distribution functions of the liquid water path scenes to distinguish different types of stratocumulus.
Preprocessing based on cloud top temperature over scenes identified as wholly oceanic is required [Wood
and Hartmann, 2006] and the three-layer backpropagation scheme requires user identification in the training
scheme. Our methodology, therefore, has some similarities with this previous work, but we use only the ISCCP
joint histogram and apply the SOM algorithm globally. We leave a discussion of the results from Muhlbauer
et al. [2014] till later in this study to aid comparison between their work and results from the present study.

2. Data Set and Methodology

In this study the self-organizing map methodology is applied to the ISCCP D1 data set. Details of the ISCCP
data set and its derivation are discussed in Rossow and Schiffer [1991, 1999]. The ISCCP D1 data set occurs at
3-hourly temporal resolution on a 280 km by 280 km equal area grid (6596 of these grid points cover the Earth)
over the period July 1983 to December 2009. For each grid box, the number of cloudy pixels (each pixel is
approximately 5 km by 5 km) that belong to one of seven pressure levels and six optical thickness categories
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is identified. Thus, all cloudy pixels in a grid box are placed in one of 42 bins forming a joint histogram of the
cloud optical depth-cloud-top pressure. The summation of the cloud fraction in each bin therefore allows the
calculation of the total cloud cover. It should be noted that the ISCCP retrieval of optical depth utilizes visible
wavelengths, and the histograms are therefore only available during daytime.

The SOM scheme is applied to the joint probability distribution function histograms of the cloud top pres-
sure versus optical depth. In this initial work, we study the data for one calendar year (2000) to demonstrate
the potential of this technique. However, analysis of a number of other individual years displays very similar
clusters (not shown) and we are principally interested in testing the SOM methodology.

We also use the ISCCP FD data [Zhang et al., 2004] to provide clear and overcast radiative fluxes for the same
period at identical spatial and temporal resolution. The radiative fluxes are derived using a broadband radia-
tive transfer code which takes the ISCCP retrievals of cloud properties and surface albedo as inputs. From the
clear and overcast radiative fluxes, we derive the cloud radiative effect (CRE) using the formulation defined in
Oreopoulos and Rossow [2011]:

CRESW∕LW = CF[FSW∕LW(clr) − FSW∕LW(over)] (1)

where the fluxes (F) at the top of the atmosphere in the shortwave (SW) and longwave (LW) are differenced
between clear (clr) and overcast (over) conditions and multiplied by the cloud fraction (CF).

This study also employs output from the ERA-Interim reanalysis [Dee et al., 2011] on a 0.75∘ latitude/longitude
grid. These data are then resampled to a 2.5∘ by 2.5∘ grid to allow direct comparison with the ISCCP output
once it has been reprojected from an equal area grid using a nearest neighbor interpolation scheme.

Self-organizing maps (SOMs) are artificial neural networks commonly used to reduce the dimensionality of a
data set by clustering [Kohonen, 1990]. The SOM scheme is an iterative unsupervised learning process which
adjusts a set of reference vectors on the basis of differences between the reference vector and each input
record. The initial set of reference vectors, where each reference vector represents the 42 values of cloud
fraction in the joint histogram, are initialized linearly along the data’s greatest eigenvectors. A learning rate
determines how the adjustment is related to the difference between the reference vector and the input data.
Training then consists of many iterations of reference vector adjustment until stable values are reached.
In each iteration, the best matching reference vector is found for each input record and updated to more
closely resemble the input data. Mathematically, individual vectors in the input matrix x are compared to a
set of i reference vectors mi to identify the best matching node c using the Euclidean distance:

c = arg min{‖x − mi‖} (2)

During the learning process, the reference vectors within a defined neighborhood of the input vector are
updated, using the algorithm

mi(t + 1) = mi(t) + hci(t)[x(t) − mi(t)] (3)

where hci(t) is the neighborhood kernel which can be written as

hci(t) = 𝛼(t)exp

(‖rc − ri‖2

2𝜎2(t)

)
(4)

where 𝛼(t) is the learning rate, 𝜎(t) is the width of the kernel, and rc and ri are the radius vectors for reference
vectors c and i. The learning rate and width of the kernel are reduced as a function of time such that the SOM
evolves more quickly initially. The Euclidean distance term associated with the radius vectors for different
node means is used to identify reference vectors within a certain range of the best matching vector. These
neighboring reference vectors are then updated to a lesser degree than the best matching node resulting in
adjacent nodes having the strongest similarity. This feature of the scheme produces the coherent organization
of output which is a useful property of the scheme. This training process ultimately produces reference vectors
that each represent a distinct portion of the multidimensional input space. Training of the neural network is
unsupervised with the user specifying only the size and shape of the SOM as well as the training parameters
(learning rate and width of the kernel); the end result is an objective set of distinct maps (referred to as nodes
from this point on) that are representative of the entire data set. This makes SOMs useful tools for cluster
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analysis of large, complex data sets, particularly because the algorithm is relatively simple and computation-
ally efficient. However, it is worth clarifying that the SOM technique differs from cluster analysis in that it
identifies points in the data space that are representative of the surrounding data rather than simply group-
ing the data [Huth et al., 2008]. Thus, the nodes within the SOM reflect the entire range of the data, which is
clearly a desirable property of a classification, but can make interpretation of the results challenging. While
SOMs have been used for a wide array of studies covering many disciplines [Kohonen, 2013], they are particu-
larly effective at developing climatologies [Hewitson and Crane, 2002] and investigating weather patterns and
extremes [Cassano et al., 2015; Jolly et al., 2016]. They have also been widely used in identifying the impact of
circulation patterns on extremes and trends [Cavazos, 1999; Horton et al., 2015]. The recent review by Sheri-
dan and Lee [2011] provides a good overview of SOMs in climate research. Clustering methods in general,
and SOMs specifically, also have great potential for validating atmospheric model output against observa-
tions [Coggins et al., 2014]. A more detailed mathematical treatment of the SOM scheme is detailed in Kohonen
[1990] and Kohonen [2013].

This study is the first to our knowledge that has applied the SOM technique to satellite cloud data to iden-
tify multiple cloud types or WS globally. Within the context of this study, the purpose of the SOM is to cluster
regions and periods with similar cloud conditions together into classes. The size and shape of a SOM are par-
ticularly important factors to consider before training: too many possible classes will result in low frequencies
of occurrence for each class, while too few will result in classes that are “averages” of what may have been two
similar, but distinct classes in a larger SOM [Cassano et al., 2015].

After testing various configurations and examining ancillary information, such as the geographical and sea-
sonal distribution of the various states and ERA-Interim reanalyses data, a 5 × 3 SOM was selected to be
optimum. The 5 × 3 grid was selected as this shape and size showed sufficient intercluster variability while
maintaining relatively high frequencies for each cluster. A Sammon map [Sammon, 1969] was also produced
which showed approximately even separation between the SOM nodes (see later discussion) with some minor
distortion which is a good indication that the SOM was well constructed and trained for the purpose of this
study [Cassano et al., 2015]. As an additional check, multiple SOMs were trained using different years of data
and generally showed excellent correspondence with the results presented (not shown).

3. Results

Figure 1 displays the joint histogram for the 15 nodes identified via application of the SOM technique to all the
daytime histograms observed globally during the year 2000. The color-coded bins identify the cloud fraction
within each cloud top pressure/cloud optical depth bin. The relative frequency of occurrence and the total
cloud cover associated with each node is identified in the titles. An examination of Figure 1 shows that the top
left node in the SOM (node 1) is predominantly related to clouds with high tops (low pressure) and moderate
to high optical depths, the total cloud cover also being high. The bottom right node in the grid (node 15) is
related to low-level (high cloud top pressure) clouds with low to medium optical depths, though it should be
noted that the total cloud cover is again high. Thus, this diagonal relates to polar opposites in terms of cloud
top pressure. Similarly, the top right and bottom left nodes relate to clouds with rather different properties,
but interestingly again, both relate to high cloud covers. This structure is not surprising given that Reusch
et al. [2007] has previously noted that nodes at the ends of one diagonal are often similar to the positive and
negative phases of the first principal component of the input data, while the other diagonal has corresponding
similarities to the second principal component. This may also be a function of the initialization process used
in this study. However, in general, even SOMs initialized randomly often display this property and the SOM
pattern formed in this work is insensitive to different initializations.

An alternative way of viewing the ordering of the SOM is to examine the ordering of the nodes based on their
cloud top pressure and optical depth independently. It is then possible to observe that the cloud top pressure
for the highest occurrence states within the joint histogram increases from left to right in the grid, while the
optical depth decreases from top to bottom in the grid. Interestingly, within this SOM the nodes linked to
low total cloud covers (less than 50%) are in the center of the SOM (nodes 7–9, and 13). This may reflect the
fact that cloud states with higher cloud covers will likely have higher variance than those for smaller cloud
covers and thus the most different states will most naturally act as endpoints in the classification. We also note
that the occurrence of thin cirrus cloud identified by the cloud fraction in the top left grid point in each joint
histogram also reduces from left to right, showing that the ordering within the SOM can be interpreted in a
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Figure 1. The SOM reference vectors displayed as joint histograms of cloud optical depth versus cloud top pressure, representing the 15 nodes identified by the
self-organizing map. The relative frequency of occurrence (RFO) and the total cloud cover (TCC) associated with each node in the SOM are indicated in the
legend above each histogram. Note the logarithmic color scale.

physically meaningful way. The objective ordering of states provided by the SOM technique is potentially an
advantage relative to previous studies in certain applications. A comparison of the various nodes in the SOM
with the WS in Tselioudis et al. [2013], derived using the k-means clustering algorithm applied to the global
ISCCP data set, shows a number of corresponding states again highlighting the physically meaningful nature
of this clustering. This correspondence also acts to independently verify the robustness of classes derived
using the k-means clustering technique. For example, WS 1 in Tselioudis et al. [2013] compares well with node
1 in the current analysis. For the sake of clarity, a more detailed comparison of the differences and similarities
between this analysis and previous work is left until the geographical distributions associated with each node
have been introduced.

To understand the relationship between the various nodes in the SOM, and also to identify an interesting prop-
erty of the SOM, a Sammon map is displayed in Figure 2. A Sammon map projects multidimensional vectors
into a two-dimensional space allowing a visualization of the relationships between the different states. The
reference vectors for each generalized SOM node, in this case identifying the cloud fraction in each grid point
within the joint histogram, are projected onto a two-dimensional surface allowing the SOM nodes to be plot-
ted on the basis of relative neighbor-to-neighbor similarity. Figure 2 represents the Sammon map for the
SOM used in this study, where the separation between the points represents the Euclidean distance between
individual nodes in the SOM and therefore the relationship between the neighboring nodes. The geomet-
ric shape of the Sammon map is important in defining how the nodes making up the SOM are interrelated.
Cassano et al. [2015] suggests that a uniform Sammon map indicates little distortion which allows the physi-
cal behavior depicted in the SOM to be interpreted more easily. The pattern displayed by the Sammon map
in Figure 2 is relatively regular, with each row and column having the same ordering as on the grid. However,
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Figure 2. Sammon map displaying the relative position of each SOM node
in the 2-D projection of the SOMs reference vectors (i.e., an estimate of
the data’s probability density function). The distances between nodes
represent the Euclidean distances between SOM node reference vectors.

the proximity of some nodes to their
neighbors varies, with nodes 1, 6, and
11 being very well separated in this
two-dimensional representation. The
fact that the Sammon map is not
a simple grid demonstrates that the
SOM technique distributes the nodes
according to the density of the input
data which is potentially an extremely
beneficial trait in this application.

Figure 3 displays the geographical dis-
tribution of the various nodes, which
in turn are related to particular cloud
types, as a relative frequency of occur-
rence at each location. The RFO iden-
tified in Figure 1 is the global aver-
age; thus, it is possible to have small
regions with high RFO compared to
the node RFO. For example, node 1 has
a global mean of 12.9% but can have
regional values greater than 40%. To
aid in understanding the physical sig-
nificance of the patterns in Figure 3, it
is useful to also examine the joint his-

tograms displayed in Figure 1. For the sake of brevity we describe only a subset of the individual nodes and
their relationships to the work of Tselioudis et al. [2013]. Examination of node 1 in Figures 1 and 3 suggests that
this node represents clouds related to tropical deep convection, as it includes mostly high top optically thick
clouds and is found primarily along the equator, over the ocean in the Pacific warm pool, the South Pacific
and South Atlantic convergence zones and the Indian Ocean. This node also has high relative occurrence rates
above land over the Amazon, equatorial Africa, and the Himalayas. The geographical and joint histogram for
node 1 has a strong qualitative correspondence to WS 1 identified in Tselioudis et al. [2013], with the exception
of the high occurrence rate over the Himalayas. We speculate that the pattern in the Himalayas may be related
to the seasonal monsoon. It should be noted that node 1 also has some similar features to WS 3 in Tselioudis
et al. [2013], but given that those states have a combined relative frequency of occurrence of 12.5%, it may be
that this node actually represents a combination of these two states given that its frequency of occurrence
is 12.9%. Previous work by Tselioudis et al. [2013], Tan et al. [2013], and Tan et al. [2015] have shown that the
difference between WS 1 and WS 3 are physically important; thus, this point is considered later in section 3.3.

The joint histogram for node 2 in Figure 1 shows significant similarities to node 1 and the low global relative
frequency of occurrence of this node might suggest that it should not be classified distinctly from node 1.
However, examination of the Sammon map in Figure 2 suggests that node 2 is actually more similar to node
3 than any other node. In addition, node 2 displays a very distinct geographic structure with maxima linked
to the Amazon, equatorial Africa, and the Himalayas (see Figure 3). This analysis therefore suggests that high
top and moderately optically thick clouds observed over land are highlighted in this class. Whether this node
is related to clouds with relatively lower cloud covers (74.3%) for which the retrieval of optical thickness has
been impacted by the underlying surface type does come to mind. It should be noted that this type does not
display any strong correspondence with any of the WS identified in Tselioudis et al. [2013].

Node 3 is related to midlevel clouds with a wide range of optical depths based on Figure 1 with a geograph-
ical distribution weighted toward latitudes poleward of 45∘ in both hemispheres, with a particularly high
occurrence in the Southern Ocean storm track near the edge of Antarctica (see Figure 3). This type therefore
bears some resemblance to WS 4 and WS 5 in Tselioudis et al. [2013]. Node 5 also has a similar joint histogram
(see Figure 1) and similar geographical features (see Figure 3) to WS 4 in Tselioudis et al. [2000]. In particular,
the enhancement over the West Antarctic in both WS 4 and node 5 is noticeable.
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Figure 4. Correlation between the geographic relative frequency of
occurrence maps for the different nodes.

As previously identified, the nodes
with the lowest total cloud covers
(below 50%) are related to nodes
7–9 and to a lesser extent 13. The
geographic patterns and the joint
histograms of these nodes display
distinct similarities with WS 7. In
particular, the node 8 geographical
pattern bears a striking relationship
to WS 7 with a widespread distribu-
tion over the tropical and subtropical
oceans away from the convective
regions and over the ice-capped land-
masses of Antarctica and to a lesser
extent Greenland. Interestingly, the
geographical pattern of high occur-
rence for node 7 matches rather well
with the pattern for node 8 over land
regions apart from the Sahara and the
ice-covered regions; while the node
9 pattern looks rather similar to the
node 8 pattern over the oceans and

the Sahara. Node 13 is also dominated by cloud cover over the tropical ocean regions. Given the very high
relative frequency of occurrence of Weather State 7 in Tselioudis et al. [2013] (32.5%) and the lower occurrence
rates of nodes 7–9 and 13, it seems that the current analysis has more finely separated the fair weather state
in the previous work, highlighting differences in the geographic distribution of low cloud cover types, likely
related to anticyclonic regions, over land and ocean [Tselioudis et al., 2000].

This finer separation corresponds with previous work, with Cassano et al. [2006] indicating that the SOM
classification approach is characterized by a tendency to categorize the distributions more uniformly than
traditional cluster analysis algorithms. For example, Michaelides et al. [2001] compare an agglomerative hier-
archical clustering with a SOM classification applied to precipitation data and find that the latter has a greater
ability to identify minor characteristics within the distributions. Michaelides et al. [2001] also find that pre-
cipitation classification using the SOM categorizes the distributions more uniformly, whereas the hierarchical
agglomerative clustering scheme classifies the distribution into a few distinctive classes. The latter behavior
can result in grouping rarer data points into larger cluster classes that are not necessarily representative of
those data points. However, it should be noted that the SOM method creates a gridded representation of a
continuous data space. Thus, one issue with the SOM classification is that occasionally the scheme identi-
fies transition nodes which may not be physically meaningful because the SOM creates a continuous gridded
representation of the data space. Thus, some patterns will span relatively empty portions of the physical data
space and these nodes show up as being relatively low frequency. Node 4, 6, 10, and also possibly node 12 in
the current analysis may be transition states. This might be seen as a flaw, but it is also possible to consider
these patterns as representing relatively rare features in the physical data space which might be an advantage
when considering transitions. We also identify later that these transition states have different meteorological
and radiative properties linked to them.

The cloud fraction joint histogram linked to node 11 (bottom left in grid) is dominated by cirrus (top left
grid point) in Figure 1, and in Figure 3 is distributed around the Pacific warm pool, Indian Ocean, and equa-
torial Africa regions, and thus has distinct geographic similarities with the tropical convective cloud identi-
fied in node 1 of the SOM. However, unlike the node 1 geographic pattern there is a low frequency of this type
above the Amazon. This node matches extremely well with WS 6 in Tselioudis et al. [2013], even including the
low occurrence rate over the Amazon which Tselioudis et al. [2013] attributes to the strong seasonality of cirrus
in this region.

Node 15 is related to the most commonly occurring low-level cloud type with predominantly lower optical
depths (see Figure 1). An inspection of Figure 3 shows that this node is widespread geographically, but has
the largest occurrence frequencies off the western coasts of North and South America, Africa, and Australia
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Figure 5. The monthly variation in the frequency of occurrence (%) of the various nodes in the SOM displayed in Figure 1 for the Northern and Southern
Hemispheres (red and blue lines, respectively). The global mean for each node is identified as a black horizontal line in each subfigure. The standard deviation
as a percentage over the year relative to the annual mean relative frequency of occurrence for each node is identified in each legend for the Northern and
Southern Hemispheres (red and blue text).

and is widespread at approximately 40∘S. The spatial structure and the joint histogram of this node therefore
match extremely well with WS 10 in Tselioudis et al. [2013], though the global relative frequency of occurrence
of this node in this analysis is almost double that in the previous work. This means that the five nodes with
the highest relative frequency of occurrence have similarities with weather states in Tselioudis et al. [2013].

Note that the joint histograms (Figure 1) for Node 14 and 15 display distinct similarities which in previous
studies may have meant a reduction in the number of states in the classification. However, examination of the
Sammon map (Figure 2) shows that these states are close but distinct, and an inspection of the correspond-
ing geographic maps (Figure 3) shows that node 14 is less tightly focused on the western coasts of North and
South America, Africa, and Australia than the node 15 pattern. We will explore these nodes, their seasonal
progression, and their meteorological context later in this analysis. There is also no corresponding enhance-
ment at 40∘S in the node 14 pattern. Therefore, to further test the robustness of the number of nodes in
the SOM, the correlation coefficients between the different geographical patterns related to each node were
derived. Figure 4 displays a matrix of the correlation coefficients between the geographic distributions for
the various nodes in the SOM identified from the ISCCP joint histograms and displays a predominance of
positively correlated nodes, with negatively correlated nodes being distinctly rarer. However, using the 0.8
correlation coefficient threshold from previous studies [Tselioudis et al., 2013], the nodes are all identified to
be distinct. It is interesting to note that the largest nonself correlations in Figure 4 consistently occur between
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neighboring nodes. This further validates the objective ordering of the nodes geographically as a result of the
SOM algorithm, in addition to the objective ordering previously displayed in the Sammon map (Figure 2). We
also note that nodes 3 and 5 do not occur in the regions where the fair weather states are common.

3.1. Temporal Variability
Figure 5 displays seasonal variations of the relative frequency of occurrence for the different nodes in the
Northern and Southern Hemispheres (red and blue lines, respectively). We display these distribution for both
hemispheres and normalize the relative frequency data such that the impact of continual daylight or night
in the polar regions has a small impact on the analysis. Examination of the Northern Hemisphere patterns
in Figure 5 (red lines) shows a range of complicated seasonal behavior associated with the various nodes. In
particular, nodes 1, 2, and 6 predominately occur in August, September, and October, respectively. Nodes 3
and 15 have a maximum in June and July. A number of the fair weather patterns have a minimum in Northern
Hemisphere summer (nodes 8, 9, and 13) and nodes 4 and 5 have a maximum in May. Nodes 7, 10, and 12
also have relatively muted seasonal variation. The titles in Figure 5 for each of those nodes shows the range
of variation for the Northern and Southern Hemispheres (red and blue text, respectively).

Inspection shows that the relative frequency of occurrence varies by less than 20% of the annual mean in the
Northern Hemisphere as measured by the standard deviation of the monthly relative frequency of occurrence,
apart from nodes 4 and 9. It is also noteworthy that nodes 14 and 15 have occurrence frequencies lower than
the global mean in every month in the Northern Hemisphere, suggesting that these clouds are predominantly
observed in the Southern Hemisphere which is also clear from inspection of Figure 3.

Figure 5 also displays the seasonal pattern of the frequency of occurrence for each node in the Southern
Hemisphere (blue lines). A number of the nodes are seen to produce almost the opposite pattern to the
Northern Hemisphere cycles, that is, the seasonal cycle is shifted by approximately 6 months in the Southern
Hemisphere relative to the Northern Hemisphere. For example, nodes 1 and 6 now have minima in August
and September. We also see that nodes 7 and 12 have muted seasonal cycles in the Southern Hemisphere.
Interestingly, the seasonal variation is larger in the Southern Hemisphere than in the Northern Hemisphere
with only nodes 4 and 8 having larger relative variations in the Northern Hemisphere (cf. red and blue standard
deviation values in the titles). This is particularly clear in nodes 1, 5, 10, 12, and 14 where the seasonal varia-
tion is close to a factor of 2 larger than in the Northern Hemisphere. Node 15 is particularly interesting as it
does not display the expected 6 month shift in the timing of maximum occurrence between the hemispheres.
Thus, the 5 × 3 SOM created displays coherent structures associated with the joint histograms and both the
geographical and seasonal patterns, suggesting that the patterns selected are physically meaningful.

As previously hinted at, one potential advantage of the SOM technique relative to previous studies, which
nearly all used k-means clustering, is that the SOM scheme creates a reproducible organization of the various
nodes. Studies using the k-mean scheme require a subjective ordering of the various states [Tselioudis et al.,
2013; Mason et al., 2015], which means that this type of analysis is more difficult to use for studies focusing on
the transitions between states, an area that has therefore received little attention previously. The exceptions
are a minor application in Jakob et al. [2005] and recent work by Tan and Jakob [2013] and Tan et al. [2015].
Tan and Jakob [2013] developed a convective regime data set based on ISCCP infrared-only retrievals. They
demonstrated that these regimes capture the essential properties of the original weather states, but can be
used to track states and transitions between states. This allows them to examine the diurnal cycle of con-
vection in the framework of their regimes, for example. A scheme which objectively identifies states into an
ordering could be beneficial for similar studies.

Figure 6 displays a set of grids, one for each node, representing information about transition frequencies
between nodes. These transition frequencies have been derived from data one day apart over the entire
globe. We decided to compare the daily transitions because of the significant potential for creating a biased
sample if we considered 3 h transitions given that only daytime histograms can be utilized in our analysis.
The application of SOMs to ISCCP output for both day and nighttime data as used in Tan and Jakob [2013] is
beyond the scope of the current study, but clearly is an area worthy of future work. Examination of the grid
linked to node 1 in Figure 6 shows a number of interesting features. First, the highest transition probability
for node 1 is itself suggesting that node 1 is a persistent type. We also note that when a particular geographic
position in the node 1 state transitions to another node, this is most commonly node 11. We also see that
all the other corner nodes (nodes 5, 11, and 15) are persistent and are most likely to remain in that type for
more than 1 day. In addition, for nodes 5, 11, and 15 when moving to another node, the node transitioned
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Figure 6. The set of grids in this figure identify the transition probability (%) for each node to another node. The green box identifies the node considered for the
transition probabilities in each grid. The relative frequency of occurrence associated with each node in the SOM is indicated in the legend above each grid.

to is the nearest adjacent corner. The most common transitions away from a node are also associated with
nodes close to the original node. It is interesting that the nodes with higher relative frequencies of occurrence
also generally have higher persistence. For example, the nodes with the five largest relative frequencies of
occurrence (1, 5, 8, 11, and 15) all have high persistence from one day to another.

To gain a better understanding of the transitions and to reduce the impact of the varying relative frequency of
occurrence of the different types, Figure 7 displays the difference between the transition probability and the
node’s global relative frequency of occurrence (identified in the titles in Figure 7). The underlying assumption
in this analysis is that, if transitions are random, then the transition probability should have the same value as
that node’s relative frequency of occurrence. Figure 7 demonstrates that the vast majority of nodes either stay
in the same node or shift to near neighbors after a day. In particular, nodes 1, 3, 5, 8, 9, 11, 13, and 15 are most
likely to stay in the current node than to transition to any other node. We also see that node 8 is most likely to
transition to nodes 7, 9, or 13 which are all nodes associated with low total cloud covers or fair weather states.
All of the corner nodes (1, 5, 11, and 15) also show strong ordering with the probability of transitions between
diametrically opposite corners being unlikely in every case. The combination of Figures 6 and 7 strongly
demonstrates that the SOM has identified a clustering which is ordered in a physically meaningful way in
terms of transition probabilities between cloud types between days and that this has occurred without the
need for subjective ordering using ancillary data as in Tan and Jakob [2013]. Also, highlighting that the nodes
linked to transitions, such as nodes 4 and 12, would be useful in future investigations of temporal variability.

To obtain further insight on the seasonal variability and to further highlight the quality of the SOM
classification, Figure 8 displays the geographical relative frequency of occurrence as a function of season for
node 15. Node 15 was selected for examination because of its high annual mean occurrence rate and the
large seasonal variability displayed. As previously identified, the low-level clouds that this node represents
are widely spread over the ocean regions. However, an examination of the relative frequency of occurrence
of this node in Figure 8 shows that the distinct seasonal cycle in this type is associated with variations in
the occurrence rates off the western coasts of North and South America, Africa, and Australia and to lesser
extent Europe. In particular, the high occurrence rates off the western coast of North America have a strong
seasonal cycle with a maximum in boreal summer, while in the Southern Hemisphere the regions of high

MCDONALD ET AL. SOM ANALYSIS OF ISCCP DATA 13,019



Journal of Geophysical Research: Atmospheres 10.1002/2016JD025199

Figure 7. As in Figure 6 but for the difference between the transition probability and the relative frequency of occurrence (%).

occurrence off the west coasts of South America, Africa, and Australia minimize in March to May. The similarity
of node 15 with WS 10 in Tselioudis et al. [2013] suggests that this node is related to marine stratocumulus and
stratus cloud decks. This interpretation is supported by the almost exclusive occurrence of this type over
oceans, particularly off the western coastlines in the subtropics, locations that are linked with extensive stra-
tocumulus decks [Klein and Hartmann, 1993]. Work in Muhlbauer et al. [2014] has previously examined marine
stratocumulus globally and found a very similar seasonal variation in the North Pacific and Atlantic to those
identified for node 15 in Figure 8. Similarly, the seasonal variation and geographic position of maxima in occur-
rence match rather well with the results of Muhlbauer et al. [2014]. That study identified that the maxima near

Figure 8. Maps of the seasonal mean relative frequency of occurrence (%) for nodes 14 and 15 identified by the SOM displayed in Figure 1.
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45∘S is more consistent than the variability at lower latitudes which is also a feature of this nodes seasonal
geographic pattern. Further examination of the work of Muhlbauer et al. [2014] also suggests that node 14
has distinct similarities with the open mesoscale cellular convection (MCC) class in that work (see Figure 8).
Examination of Figure 8 shows many similar features in the two nodes; however, there is a very clear enhance-
ment in June, July, and August which corresponds with the open MCC classification in Figure 5 of Muhlbauer
et al. [2014]. This is surprising as this is a rather subtle categorization of stratocumulus, particularly given the
complexity of the analysis utilized in that study to identify the different spatial structures of the MCC. This
demonstrates that the ISCCP data set is classified very effectively with the SOM scheme in this region of the
phase space.

Examination of the results in Muhlbauer et al. [2014] also suggests that the total cloud cover is generally higher
in the closed MCC than the open MCC class and that while the cloud top heights are rather similar, the closed
MCC tend to have higher cloud optical depths. These differences are also observed in nodes 14 and 15, with
higher cloud covers in node 15 than 14, little difference in cloud top pressure and lower optical depths in node
14. This good correspondence therefore again supports the subtlety of the SOM classification. This rather sub-
tle classification could be considered irrelevant; however, Muhlbauer et al. [2014] show that the instantaneous
shortwave cloud radiative forcing is about twice as high in the closed MCC case than the open MCC case.
We show later in this study that a similar change occurs for our classification using the ISCCP FD data. This
supports our interpretation that the SOM classification scheme is identifying physically meaningful classes.

3.2. Comparison With Ancillary Data
Applications of the cloud regime information derived in previous classification studies include understand-
ing cloud feedbacks and the evaluation of regime-dependent errors in GCMs. As identified in Jakob et al.
[2005], these applications rely on the assumption that the various regimes or weather states relate to a distinct
atmospheric context. For example, Jakob et al. [2005] consider thermodynamic and radiative characteristics.
A number of studies [Klein and Hartmann, 1993; Medeiros and Stevens, 2011; Tan et al., 2013, 2015] have also
shown that the midtropospheric vertical velocity and lower tropospheric stability (LTS) are important param-
eters for identifying the impact of the dynamic and thermodynamic state of the atmosphere on cloud. In
addition, work in Jakob et al. [2005] has used the total column water vapor (TCWV) to characterize the over-
all water vapor content in each regime. We therefore examine the vertical velocity profile, the LTS, and the
TCWV values related to the various nodes. Given the significant latitudinal variability in the TCWV, we display
the perturbations of that variable relative to the zonal mean to allow greater specification. In this analysis,
ERA-Interim reanalysis data are used and subsampled to a square 2.5∘ by 2.5∘ grid which aligns with a similar
grid derived from the ISCCP data’s equal area coordinate system. The equal area ISCCP data were interpolated
to a 2.5∘ by 2.5∘ latitude-longitude grid using a nearest neighbor scheme. Given the 6-hourly output avail-
able from the ERA-Interim reanalysis, only the corresponding subset from the ISCCP 3-hourly data set is used
in this analysis.

In a similar manner to Gordon et al. [2005], Jakob et al. [2005], and Gordon and Norris [2010], we have derived
the mean vertical velocity profile for each cloud regime for pressure levels between 1000 and 100 hPa. Figure 9
displays vertical velocity profiles for each node in black, and gray lines identify the vertical velocity profiles
connected to all the other nodes for reference. Inspection of Figure 9 shows that the top left node in the
SOM (node 1) is predominantly related to large negative pressure vertical velocities (connected to upward
motion) with a maximum value at around 400 hPa. Thus, a node predominantly related to clouds with high
tops in Figure 1 is linked to a region of strong ascent. The bottom right node in the grid (node 15) is related
to positive vertical velocities throughout the profile and is therefore linked to a region of strong descent. In
Figure 1, node 15 (bottom right in grid) is related to low-level clouds as might be expected. This diagonal
relates to polar opposites in terms of vertical velocity sign and cloud top pressure which reiterates the fact that
there is a physically meaningful ordering. The gradual shift from positive (descent) to negative (ascent) vertical
velocities as we move from right to left in the SOM structure is also clear. Interestingly, the vertical velocity
profile for nodes 9, 14, and 15 are so similar that they are indistinguishable in Figure 9, which might suggest
an issue. However, separation of different cloud regimes via the mean vertical velocity in the midtroposphere
(500 hPa) as completed in previous work by Tan and Jakob [2013] and Tselioudis et al. [2013] also shows that
certain states have little difference in their vertical velocity distributions. For example, the vertical velocity
distributions for WS 9 to WS 11 are near identical in Tselioudis et al. [2013]. The use of profiles does provide
slightly more information. For example, they highlight that nodes 2, 3, and 6 have different vertical structures,
but near-identical mean values at 500 hPa. Though, Figure 9 also clearly identifies the fact that different clouds
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Figure 9. Vertical profiles of the pressure vertical velocity (hPa/h). Negative values correspond to upward motion and positive values relate to downward motion.

can form in very similar vertical velocity regimes. We will therefore examine other factors relevant to clouds
below. Notably, all the transition states (nodes 4, 6, 10, and 12) have different vertical velocity profiles than
their nearest neighbors based on Figure 7, suggesting that the transition states may be physically meaningful,
but rare.

Before moving to other variables, it is useful to compare our patterns with previous work, comparison of the
patterns in Gordon and Norris [2010] associated with joint histograms and vertical velocity profiles shows a
good deal of correspondence with the distributions in our analysis. For example, their Cluster 7 (associated
with strong frontal activity in their midlatitude study) is linked to large negative vertical velocities and optically
thick cloud with low cloud top pressures which are very similar structures to those observed for our node
1. The vertical velocity profile for node 1 is also similar to the CD regime in Jakob et al. [2005], which they
identified as their regime that is closest to the classic tropical convection profile. Thus, node 1 seems to link
to both enhanced vertical velocity regimes in the tropics and midlatitudes as might be expected from the
geographic distribution displayed in Figure 3. Cluster 1 in Gordon and Norris [2010] is related to near-zero
vertical velocities and a joint histogram related to clear sky conditions which corresponds well with our node
6. Clusters 2 and 3 in Gordon and Norris [2010] are linked to positive vertical velocity profiles and optically thin
low-level cloud, which they identify as cumulus and stratocumulus, which corresponds nicely with nodes in
the bottom right of the SOM grid. Similarly, our node 1, previously identified to be connected to WS 1 and WS
3, has larger negative vertical velocities at 500 hPa than all other states in line with the pattern in Tselioudis
et al. [2013].

To further assess the importance of the dynamic and thermodynamic environment. Figure 10 displays the
mean values of the TCWV perturbation associated with specific ranges of the midtroposphere vertical velocity
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and the lower tropospheric stability. Only TCWV perturbation values in regions where the density of observa-
tions is greater than 0.075% of the total number of observations within that node are displayed. Contour lines
in each node identify the 0.1%, 0.3%, and 0.5% density values, with the most central line always representing
the highest densities. This allows us to effectively identify the joint histogram related to the density of obser-
vations as a function of vertical velocity and LTS, similar to analysis in Tan et al. [2013]. Examination of Figure 10
shows a clear ordering in the density patterns with the smallest values of the LTS and most negative vertical
velocities (highest rates of ascent) observed in the left-hand column of the grid. Notably, the highest density
states (linked to specific ranges of vertical velocity and LTS) for node 1 are linked to negative and near-zero
vertical velocities and are linked to a well-defined region with LTS values between 15 and 20 K. The opposite
diagonal (node 15) has a prevalence of larger LTS values and almost exclusively positive vertical velocities.
Thus, the joint histograms have a clear ordering linked to these opposite diagonals. We also note that as we
move from left to right in the grid the range of LTS values increases and the vertical velocity values become
more positive. Interestingly, box-whisker plots of LTS and vertical velocity for the regimes identified in Tan and
Jakob [2013] show a similar ordering, namely, more negative vertical velocities connected to lower values of
LTS. This fact is supportive of both the ordering of the SOM and the fact that it is physically meaningful.

The weighted mean values of the TCWV perturbations identified in the legend of each subfigure are not so
clear, with the largest values on the left-hand side of the grid. But the smallest values distributed throughout
the right-hand side and center of the grid. In particular, node 1 (top left in grid) has a weighted arithmetic
mean TCWV perturbation of 7.7 mm, node 8 has a mean TCWV perturbation of−2.9 mm, and the final node on
the diagonal (node 15) has a value of−1.1 mm. The most positive TCWV anomalies relate to regions of low LTS
and large negative vertical velocity and therefore likely relate to regions of horizontal moisture convergence
and upward vertical motion, while the largest negative TCWV anomaly relates to node 8, a clear sky state.

Comparison of the nodes linked to clear skies (node 7–9 and 13) show some differences in their vertical veloc-
ity versus LTS joint histograms. For example, node 8 has a wide range of LTS but a more constrained set of
vertical velocities than the other clear sky states. We also see that node 8 has a large negative TCWV anomaly
related to it. Thus, this cloud regime seems to correspond to low vertical velocities, a wide range of LTS values,
and relatively dry regions of the atmosphere. For node 7, associated with slightly positive TCWV perturba-
tions, the lack of cloud appears to be related to very weak vertical motion, while larger LTS and dry air could
be factors in the absence of clouds in node 9. Figure 10 shows that there is a good deal of overlap in the joint
histograms for vertical velocity and LTS, but given the results in Tan and Jakob [2013] this is to be expected.
Thus, similar cloud regimes can be found for relatively wide ranges of LTS and vertical velocity, suggesting
that other controlling factors play a role.

To further support the usage of self-organizing maps on the ISCCP joint histogram data, the radiative effects
of the various nodes are displayed in Figure 11. The analysis here is similar to that detailed in Oreopoulos and
Rossow [2011]. Their study quantified the cloud radiative effect associated with the cloud regimes identified in
Rossow et al. [2005] using the ISCCP FD data set for shortwave and longwave wavelengths. Figure 11 displays
the median SW and LW CRE for each node in the SOM. The error bars in Figure 11 indicate one quarter of
the interquartile range of the distributions used to calculate the composite means, similar to the method of
display used in Oreopoulos and Rossow [2011]. Examination of the ordering of the nodes in the CRE LW versus
SW space shows that nodes 1, 6, and 11 are the closest nodes to the top right of the diagram, all of these nodes
are in the leftmost column of the SOM grid displayed in Figure 1. Nodes 5, 10, and 15 bound the bottom left
portion of the range observed and are linked to the rightmost column in Figure 1. This organization is likely
associated with the fact that optically thicker cloud has a greater SW TOA CRE. While higher cloud tops are
associated with larger LW TOA CRE for a particular optical thickness. For reference, it was noted previously
that the cloud top pressure for the highest occurrence states within the joint histogram increase from left to
right in the grid in Figure 1, while the optical depth decreases from top to bottom in the grid. We also note
that the most positive TCWV perturbations occur for large vertical velocities and intermediate values of the
LTS in every case demonstrating the importance of these parameters on TCWV anomalies.

It is also notable that there are a large number of nodes with similar CRE properties linked to the top left
region of Figure 11, effectively clouds which have low CREs. This clustering of nodes is related to nodes 4,
7–9, and 12–14. This is likely a feature of the organization of the SOM in Figure 1 which attempts to distribute
evenly over the phase space, which means that low cloud fraction states (nodes 7–9 and 13) will be clustered,
for example. The color coding in Figure 11 shows the logarithm of the density of ISCCP FD states over the
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Figure 11. ISCCP FD daily LW and SW TOA CREs for the year 2000 composited using the SOM nodes displayed in Figure 1.
The horizontal and vertical error bars indicate one quarter of the interquartile range of the distributions used to calculate
the composite means; distance from median to 25th percentile is represented by the error bars below and to the left
of the symbol, while that to the 75th percentile is represented by the error bars above and to the right. Color contours
show the log10 of the number of observations within a CRE LW TOA versus CRE SW TOA grid square, effectively
identifying observational density.

CRE SW/LW phase space. This clearly shows that most observations occur in this region; therefore, the SOM
has placed more nodes in a region connected to the most populous region in this case. We therefore argue
that this clustering is justified. For example, node 8 is clearly separated from all the other nodes. Given the
difference in the CRE of nearly 100 W m−2 in the shortwave, separation of the clear sky states into a set of
nodes makes some sense physically. In particular, the small individual CRE differences are counteracted by the
relatively large relative frequency of occurrence and the wide variation in cloud fraction.

Figure 12. Joint histograms of cloud optical depth versus cloud top pressure, representing six subnodes identified by applying the SOM method to only those
data classified in node 1 in the original SOM displayed in Figure 1. The relative frequency of occurrence (RFO) and the total cloud cover (TCC) associated with
each subnode in the sub-SOM is indicated in the legend above each histogram. Note the logarithmic color scale.
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Figure 13. Maps of the annual mean relative frequency of occurrence (%) of the cloud types linked to the six nodes identified by the sub-SOM displayed in
Figure 12.

In addition, we identified that nodes 14 and 15 seem to have strong similarities with the open MCC and closed
MCC classes in Muhlbauer et al. [2014], respectively. That work identified that the instantaneous shortwave
cloud radiative forcing is about twice as high in the closed MCC case than in the open MCC case. Inspection
of Figure 11 shows an almost identical doubling relationship, with node 15 having a CRE SW TOA of approx-
imately −175 W m−2 and node 14 approximately −80 W m−2. We are therefore very confident that nodes 14
and 15 are physically distinct.

3.3. Issues With the SOM Representation
We have already identified strong points in favor of the SOM analysis, but the fact that they form a gridded
representation of a continuous data space can cause issues. For example, node 1 in Figure 1 is likely related to
WS 1 and WS 3 from Tselioudis et al. [2013] which relates to different physical regimes according to Tselioudis
et al. [2013] and Tan et al. [2013]. One way to mitigate this issue is to form a sub-SOM, effectively applying a
SOM to the data related to that particular node. Figure 12 displays the joint histogram for six nodes identified
via application of the SOM technique to ISCCP data linked to node 1 in Figure 1. This sub-SOM, as might be
expected, displays much subtler variations than those identified in Figure 1. But some similarities to that pre-
vious SOM in terms of a distinct ordering can be identified. For example, the cloud top pressure increases from
top to bottom in the 3 × 2 grid, while the optical depth decreases from left to right in the grid. Comparison
of specific subnodes within the sub-SOM shows relationships with the WS in Tselioudis et al. [2013]. For exam-
ple, subnodes 1 and 2 in the sub-SOM are now very similar to WS 1, while subnode 3 in the sub-SOM is very
similar to WS 3 in Tselioudis et al. [2013]. The corresponding geographical patterns linked to the sub-SOM are
displayed in Figure 13 and for subnodes 1–3 show good correspondence with WS 1 and WS 3 patterns in
Tselioudis et al. [2013], respectively. The lower row in the grid show similarities to WS 1–WS 3. Subnode 5 in
the sub-SOM in particular bears a resemblance to WS 2 in Tselioudis et al. [2013]. This suggests that the dif-
ferent classification methodologies can find a number of similar cloud regimes but that the classes formed
are not identical. Given the differences between previous individual weather state classifications, for example,
compare Rossow et al. [2005] and Tselioudis et al. [2013], we might expect this result. Regardless, we feel that
this study demonstrates that SOMs can identify physically meaningful cloud regimes and that further work to
examine the classification of cloud data using SOMs is warranted.
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4. Discussion and Conclusion

This work demonstrates that clustering joint histogram data from the ISCCP D1 data set using self-organizing
maps is a promising methodology for use in cloud classification. Data exploration identified that a 5 × 3 SOM
applied to the ISCCP joint histograms for the year 2000 provided a good representation of the range of joint
histograms observed globally and also a set of clusters which passed separation criteria used in previous
studies. We also demonstrated that the 5× 3 SOM created has a number of nodes which display a close resem-
blance to cloud regimes (weather states) identified using the k-means clustering algorithm in other studies
[Jakob and Tselioudis, 2003; Rossow et al., 2005; Williams and Webb, 2009; Tselioudis et al., 2013]. We find that
both the joint histograms and the geographical patterns of the relative frequency of occurrence display sig-
nificant similarities to those previous studies, further enhancing our confidence in the output of the SOM
scheme and previous work. Effectively this analysis demonstrates that very different clustering methodolo-
gies can produce some very similar states. The identified nodes also display coherent seasonal patterns in the
Northern and Southern Hemispheres (see Figure 5).

We also show that the SOM scheme automatically creates an organization of the various nodes. For exam-
ple, Figure 8 appears to show that nodes 14 and 15 relate to two distinct types of MCC based on comparison
with results in Muhlbauer et al. [2014]. This organization also groups nodes in such a way that neighboring
nodes represent cloud states that the current node is likely to transition to over the period of 1 day. This type
of ordering is completed in a subjective manner in other schemes. It is also interesting to note that nearly
half the nodes within the SOM show long-term persistence, with the highest transition probability anomaly
being related to that node staying in the same state for the 1 day period examined. This may be related to
the fineness of the clustering used in this study, our expectation being that larger SOMs would have the same
property over shorter time scales. These properties are extremely interesting and could be used as a further
test on model representations. The transition frequency of nodes at shorter time scales (between scenes mea-
sured at 3-hourly intervals) will be the subject of future work, potentially using a variation of the methodology
in Tan et al. [2015].

Previous studies have identified that other clustering schemes tend to produce a smaller numbers of states
which sometimes means that portions of the data distribution which are rare can be poorly represented
[Michaelides et al., 2001]. Other schemes also often lead to a high occurrence state which can be a catch all for
a range of distinct states. For example, the WS linked to clear sky conditions identified in Tselioudis et al. [2013]
could be an example of this preference. In the SOM created in this study, a number of nodes are identified
with low total cloud covers (below 50%) and are shown to have distinct distributions in the joint histogram
and geographical patterns. They also display subtler differences in their seasonality (node 7 has a small sea-
sonal cycle, while nodes 9 and 13 have clear maxima in Northern Hemisphere winter). In addition, the SW
CRE displayed in Figure 11 associated with the clear sky nodes (7–9 and 13) are separated with node 8 hav-
ing distinctly different properties than nodes 7, 9, and 13. It is also clear that there is a distinct ordering of the
magnitude of the subsidence identified in the vertical velocity profiles displayed in Figure 11 connected with
each of these nodes.

The fine-scale structure that can be identified with the SOM scheme is best exemplified by focusing on two
closely spaced nodes within the 5 × 3 classification. Nodes 14 and 15 in the derived SOM were shown to have
significant similarities to the classifications associated with stratocumulus regions linked to closed and open
mesoscale cellular convection in Muhlbauer et al. [2014]. These nodes also show distinct similarities with the
seasonality of the classifications and differences in the shortwave CRE which are consistent with the previous
work. This result supports the view that the SOM technique provides a finer scale classification than is readily
possible with k-means clustering for this application.

Composite mean vertical velocity profiles linked to the various SOM nodes also show a distinct structure with
a shift from profiles dominated by positive (descent) to negative (ascent) vertical velocities as we move from
right to left in the SOM structure (see Figure 9). Joint histograms of the density of states linked to midtropo-
sphere vertical velocity and the lower tropospheric stability also display a distinct organization (see Figure 10).
In particular, the smallest values of the LTS and most negative vertical velocities (highest rates of ascent) are
observed in the left-hand column of the grid with the opposite properties toward the right. The weighted
mean values of the TCWV perturbations identified in the titles of Figure 10 show less ordering with the largest
values on the left-hand side of the grid, but the smallest values are distributed in the right-hand column and
the center of the grid. Though, as might be expected, the most positive TCWV anomalies seem to relate to
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regions of horizontal moisture convergence and upward vertical motion, while the largest negative TCWV
anomaly suggests that the aridity of the air is important for node 8, the most common clear sky state.

For the sake of balance, we should identify that the SOM classification is not identical to previous k-means
clustering-based classifications and that regimes with physically meaningful separations based on the work
in Tselioudis et al. [2013], Tan and Jakob [2013], and Tan et al. [2015] are missing in the 5 × 3 SOM. However,
Figures 12 and 13 show that we can use the sub-SOM methodology to mitigate this issue. There is also the
possibility that transition states (4, 6, 10, and 12), states with low relative frequency of occurrence, exist in
the SOM analysis. However, we would argue that these may be beneficial in identifying rare states in studies
focused on transitions and also identify that they are linked to distinct meteorological and radiative states. In
addition, the clustering methodology used in Mason et al. [2015] which clusters based on both the satellite
data and model output simultaneously could be utilized if these states were considered disadvantageous in
particular applications. This study therefore demonstrates that SOMs can identify physically meaningful cloud
regimes and that further work using SOMs in this field is warranted.

It should be noted that the interpretation of cloud classifications based on the ISCCP joint histograms alone is
potentially fraught with issues. For example, Marchand et al. [2010] has discussed the cloud top height versus
optical depth histograms derived from the ISCCP, MODIS, and MISR data sets. That work demonstrates that
while there are broad similarities among the data sets, there are also large differences. This clearly therefore
increases the uncertainty on the analysis from any one data set. However, because the different data sets have
different strengths and weaknesses, Marchand et al. [2010] find that a combination of data sets can provide
more information than any individual data set. An area of future work could therefore be to perform a SOM
analysis on the combined data sets simultaneously.

Another clear expansion of this work is to compare joint histograms created from a SOM analysis of both
satellite data and output from the COSP simulator [Bodas-Salcedo et al., 2011] in a similar way to that detailed
recently in Mason et al. [2015] for GCM validation. One possibility which would also expand on this technique
is to examine the intercluster and intracluster variations as a function of time in climate data, a technique
which has previously been applied to SOM and cluster analysis data in general [Cassano et al., 2007; Coggins
et al., 2014; Coggins and McDonald, 2015].
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