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Abstract Classifications of cloud data into Cloud Regimes (CRs) and compositing based on
meteorological parameters, Dynamic Regimes (DRs), are often used in the analysis of clouds. We compare
CR and DR classifications to understand the relative merits of these approaches and develop a comparison
methodology for future studies. We apply the Self-Organizing Map technique to International Satellite Cloud
Climatology Project (ISCCP) D1 joint histograms to produce a CR and ERA-Interim pressure vertical velocity
output to produce a DR. The CR created improves the separation between high-level CRs compared to
previous work. Composites of ISCCP joint histogram data using the DR produce coherent groupings
similar to those in the CR scheme particularly in regions of ascent. Both classifications display coherent
geographical patterns and reproduce relationships between vertical velocity and cloud properties. However,
the CR produces more coherent clusters with higher intracluster similarity and a greater range of
independent cloud classes. Independent tests of composites using ISCCP FD output show that the regional
variability of longwave cloud radiative effect for particular nodes are significantly higher in the DR than
the CR scheme suggesting a poorer classification. Composite mean CloudSat reflectivity-altitude joint
histograms represent all major cloud types in the CR scheme, while the current DR grouping is less coherent
and misses classes. This suggests that the CR scheme is a more useful classification than the DR scheme
based solely on vertical velocity data. Contingency table analysis indicates a low association between these
classifications, suggesting combining these schemes would be valuable.

Plain Language Summary The two most common methods for the statistical evaluation of cloud
properties are the derivation of cloud regimes and compositing based on specific ranges of meteorological
parameters, dynamic regimes. This study compares these methods using the machine learning techniques
and independent data sets. The cloud regime method is shown to provide a more meaningful classification.
However, classification methodologies that can incorporate both methods will have additional value.

1. Introduction

The two most common methods for the statistical evaluation of cloud properties are the derivation of cloud
regimes (CRs) and compositing based on specific ranges of meteorological parameters, dynamic regimes
(DRs). These methodologies allow a statistical evaluation of cloud properties which retains the general
characteristics of specific cloud systems after averaging (Jakob, 2003).

The derivation of CRs is detailed in Jakob and Tselioudis (2003), Tselioudis et al. (2013), and McDonald et al.
(2016), this methodology relies on clustering satellite cloud data, most commonly using the k-means clus-
tering technique. Composite analysis of cloud properties based on specific ranges of dynamical parameters
has also been used (Bony et al., 2004; Haynes et al., 2011; Li et al., 2014). In this study, we aim to evaluate and
compare the CR and DR approaches applied to a range of data sets to examine the strengths and limitations
of these methods. A secondary goal is to understand the relationship between the clusters produced using
these two methodologies.

We now discuss various aspects of the schemes based on previous work. Williams and Brooks (2008) were
among the first to show that CRs were useful in model evaluation because they provide a summary of model
performance across a range of synoptic situations. They also identified that CRs tend to be broadly aligned
with large-scale atmospheric processes. CRs are also sometimes referred to as weather states (WSs), for exam-
ple, Tselioudis et al. (2013), however this terminology is not used in this study because of the possibility of
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confusion with dynamical regimes. The relationship between the CR radiative properties, geographic and
seasonal occurrence derived from observations, and model output can be compared to identify sources of
model errors (Williams & Webb, 2009). The differences between the model and observations in the CR frame-
work can result from both incorrect occurrences of different regimes and errors in the cloud properties within
those regimes. Thus, CR schemes are often helpful in identifying compensating errors (Schuddeboom et al.,
2018). Studies have also demonstrated that the CRs are useful for decomposing and differentiating the radia-
tive effects and contributions of prevailing clouds (Haynes et al., 2011; McDonald et al., 2016; Oreopoulos &
Rossow, 2011; Oreopoulos et al., 2014, 2016; Tselioudis et al., 2013; Williams & Webb, 2009).

Passive observations have been the most popular choice for creating CRs because of their wide spatial and
temporal coverage. One resultant weakness of the CR approach is the potential for misinterpretation of radi-
ance observations in terms of cloud properties (Chen & Del Genio, 2009). In particular, instrumental factors
mean that there is significant uncertainty in the amount of thin cirrus observed by International Satellite Cloud
Climatology Project (ISCCP) according to Williams and Webb (2009). In situations where cloud types overlap
vertically in multiple layers, CRs based on passive observations can also be misleading.

Mace and Wrenn (2013) examined the cloud-type definitions related to specific portions of the ISCCP cloud
optical depth versus cloud top pressure joint histograms, originally detailed in Rossow and Schiffer (1999),
using measurements from the CloudSat Cloud Profiling Radar and the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations lidar in the equatorial Pacific. They found that with the exception of the thin
cirrus and stratocumulus types, none of the cloud types based on the ISCCP joint histogram are related to
unique distributions of geometrically defined layer types, but instead are populated by diverse sets of hydrom-
eteor layers whose bulk properties combine to produce the specific radiative signatures. This is counter to
results in Y. Y. Zhang et al. (2007) which indicated a general correspondence between ISCCP and CloudSat CRs
in the tropics.

Further work in Leinonen et al. (2016) highlighted the regional variability in each cluster of a CR derived
from Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The utility of their regimes
is shown to depend on the regimes’ ability to identify cloud structures associated with distinct meteoro-
logical conditions. To test their regimes, they derive composites of CloudSat data according to their CRs.
Reflectivity-altitude joint histograms reveal different structures for each regime, but also differences within
regimes as a function of region. They hypothesize that the region-dependent variability within clusters results
from differences in meteorological environment. Regional radiative differences between ISCCP WSs were also
highlighted by Oreopoulos and Rossow (2011).

The DR method classifies cloud observations based on meteorological information. For example, Bony et al.
(2004) link cloud types and cloud radiative forcing in the tropics to the large-scale vertical motion of the
atmosphere using the pressure vertical velocity at 500 hPa (𝜔500). The large-scale tropical circulation is then
categorized based on different values of 𝜔500. A number of studies have followed this approach, such as Su
et al. (2008) and Li et al. (2014). Others have used a combination of vertical velocity and lower tropospheric
stability (LTS; Medeiros & Stevens, 2011; Nam & Quaas, 2013).

Nam and Quaas (2013) found that the identification of low-level cloud using a DR approach is insufficient to
distinguish between stratocumulus and shallow cumulus clouds using spaceborne radar observations. They
also show that the use of regional subsets are better for the evaluation of low-level clouds in CloudSat data.
However, they also identified that regional subsets derived from the DR approach have quite different radar
reflectivity histograms. This implies that within a given large-scale environment very different reflectivity pro-
files can be observed, which highlights the inherent assumption in the DR approach. Another assumption,
identified by Nam and Quaas (2013) and Gryspeerdt et al. (2017), is that the reanalyses used are representative
of the true atmospheric state.

To be complete, it is relevant to identify that other methodologies have been used to classify clouds based
on dynamics. For example, Lau and Crane (1995) and Field and Wood (2007) have used the cyclone com-
positing technique which places observations and model output into a coordinate system defined relative to
low pressure centers. Another approach is to aggregate cloud observations based on objectively determined
atmospheric states, this technique was used in Marchand et al. (2009) which compared hydrometeor (cloud
and precipitation) occurrence profiles observed by a vertically pointing millimeter-wavelength cloud radar
with similar profiles obtained from a combination of a climate model and the QuickBeam radar simulator
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(Haynes et al., 2007). More recently, Jolly et al. (2017) composited CloudSat/Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations data based on a previously defined synoptic states (Coggins et al., 2014).
Chen and Del Genio (2009) also examined CRs relative to various stages of the Madden-Julian Oscillation.

Combinations of the CR and DR methodologies and the use of both viewpoints are rare, but have recently
received attention in Williams and Bodas-Salcedo (2017). Gryspeerdt et al. (2014) also used a CR approach to
examine aerosol-cloud interactions, but added an extra step to ensure that meteorological covariation was
reduced. Recently, Gryspeerdt et al. (2017) combined elements of the CR and DR approaches to develop a
classification of cirrus and other high cloud, using a combination of satellite and reanalysis data. Examination
of the Cloud Radiative Effect (CRE) for each of the regimes used in Gryspeerdt et al. (2017) indicates that the
regimes are not as distinct radiatively as regimes defined using joint histograms (Oreopoulos et al., 2016),
with significant variation within the regimes. Interestingly, Oreopoulos et al. (2017) used a CR approach, but
then further separated observations based on aerosol optical depth to examine aerosol-cloud interaction
mechanisms.

This study examines the level of overlap between the CR and the DR approaches statistically. We also deter-
mine the relative merit of the two approaches in understanding cloud properties. With this goal in mind, we
update a CR analysis detailed in McDonald et al. (2016) which applied the Self-Organizing Map (SOM) scheme
to ISCCP observations. We also apply the same clustering methodology to ERA-Interim pressure vertical veloc-
ity profile data to produce a DR. We also assess the level of variability within the CR and DR classifications using
a common intracluster variability measure and examine the level of variation within particular cluster mem-
bers relative to the variation across the SOM. We then compare the results of these two classifications using a
contingency table analysis to determine their association. Finally, we composite independent data from the
ISCCP FD and CloudSat data sets using our CR and DR classifications to examine the two classifications.

2. Data Sets

We apply the SOM methodology to the ISCCP D1 data set and synchronous ERA-Interim pressure vertical
velocity profiles to form independent cloud and DRs which are then intercompared. Details of the ISCCP data
set and its derivation are discussed in Rossow & Schiffer (1991, 1999). The ISCCP D1 data set occurs at 3-hourly
temporal resolution on a 280- by 280-km equal area grid (6,596 of these grid points cover the Earth) over the
period July 1983 to December 2009. For each grid box, the number of cloudy pixels (each pixel is approxi-
mately 5 by 5 km) that belongs to one of seven pressure levels and six optical thickness categories is identified.
Thus, all cloudy pixels in a grid box are placed in 1 of 42 bins forming a joint histogram of the cloud optical
depth versus cloud top pressure. The summation of the cloud fraction in each bin allows the calculation of the
total cloud cover (TCC). The ISCCP retrieval of optical depth utilizes visible wavelengths, and therefore the his-
tograms are only available during daylight. Limitations of the algorithms and input data sets used in the ISCCP
climatology introduce uncertainties in cloud top pressure in situations with optically thin or multiple-layer
clouds present.

ISCCP FD data (Y. C. Zhang et al., 2004) are used to provide clear and overcast radiative outgoing fluxes for
the same period at identical spatial and temporal resolution. The outgoing radiative fluxes are derived using
a broadband radiative transfer code which takes the ISCCP retrievals of cloud properties and surface albedo
as inputs. From the clear and overcast radiative fluxes, we derive the CRE using the formulation defined in
Oreopoulos and Rossow (2011):

CRESW∕LW = CF[FSW∕LW (clr) − FSW∕LW (over)], (1)

where the outgoing fluxes (F) at the top of the atmosphere in the shortwave (SW) and longwave (LW) are
differenced between clear (clr) and overcast (over) conditions and multiplied by the cloud fraction (CF).

We also use data from CloudSat (Stephens et al., 2008) which is one of the satellites which forms the NASA
A-Train, a constellation of satellites with identical orbits that pass over the same parts of the Earth within a
narrow time window. CloudSat carries a millimeter-wavelength (94 GHz) cloud profiling radar with a vertical
resolution of 240 m and a sea-level footprint of 1.4 × 1.7 km. It detects hydrometeors within clouds while also
penetrating through optically dense upper layers to detect layers at lower altitudes, however studies have
shown that it struggles to resolve cloud below 1 km due to ground clutter (Mace et al., 2009). In particular,
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this study uses the 2B-GEOPROF R04 (2BG4) to examine the vertical distribution of cloud occurrence. In par-
ticular, the 2BG4 product contains calibrated radar reflectivity values and a hydrometeor detection mask that
indicates which radar resolution volumes contain hydrometeors (Mace et al., 2009).

This study also employs 6-hourly output from the ERA-Interim reanalysis (Dee et al., 2011) on a 0.75∘ lati-
tude/longitude grid. These data are then resampled to a 2.5∘ by 2.5∘ grid to allow direct comparison with
the ISCCP data once it has been reprojected from an equal area grid using a nearest neighbor interpolation
scheme. The CloudSat data are also integrated over the same 2.5∘ by 2.5∘ grid to produce consistent sam-
pling for intercomparison. We have also resampled the ISCCP data sets to the 6-hr temporal resolution of the
reanalysis to ensure consistency.

3. Self-Organizing Maps

SOMs are an iterative unsupervised learning scheme commonly used to reduce the dimensionality of a data
set by clustering (Kohonen, 1990). The learning process adjusts a set of reference vectors based on the differ-
ences between the reference vector and each input record. A learning rate determines how the adjustment
is related to the difference between the reference vector and the input data. Training then consists of many
iterations of reference vector adjustment until stable values are reached. In each iteration, the best matching
reference vector is identified, using the Euclidean distance, for each input record and updated to more closely
resemble the input data.

The learning rate and width of the kernel are reduced as a function of time such that the SOM evolves more
quickly initially. The Euclidean distance term associated with the radius vectors for different node is used to
identify reference vectors within a certain range of the best matching vector. The vectors that fall within this
neighborhood are then updated, although to a lesser degree than the best matching node, this feature of the
scheme producing the coherent organization of output. The training process ultimately produces reference
vectors that each represent a distinct portion of the multidimensional input space. Training of the neural
network is unsupervised with the user specifying only the size and shape and the training parameters; the
end result is an objective set of distinct maps (referred to as nodes from this point on) that are representative
of the entire data set. The patterns displayed are independent of the initialization process and consistently
result from the scheme with some very minor differences based on repeated analysis.

4. Results
4.1. CR Analysis
Figure 1 displays the representative joint histograms identified via application of the SOM technique to a
6-hourly subset of all the daytime histograms from the ISCCP D1 data set observed globally between 2007
and 2008 for regions with topography below 1,000 m above sea level. The representative histograms are the
mean histogram derived from all of the specific cases assigned to that node by the SOM scheme. Note that
the altitude mask was not used in the earlier work detailed in McDonald et al. (2016). The color-coded bins
in Figure 1 identify the cloud fraction within each cloud top pressure/cloud optical depth bin. The relative
frequency of occurrence (RFO) and the TCC associated with each node are also identified. After testing various
configurations and examining ancillary information, such as the geographical and seasonal distribution of the
various states and ERA-Interim reanalyses data to identify whether the corresponding vertical velocity profiles
were well ordered, a 5 × 3 SOM was again selected to be optimal as previously used in McDonald et al. (2016).
The 5 × 3 grid displays sufficient intercluster variability while maintaining relatively high frequencies for each
cluster and, we will show later, displays slightly smaller intracluster variability than the classification identified
in McDonald et al. (2016). A Sammon map (Sammon, 1969) was also produced which displayed a gridded
structure with some minor distortion and no twists (not shown) which is a good indication that the SOM was
well constructed and trained. To further test the robustness of the number of nodes in the SOM, the correlation
coefficients between the different geographical patterns related to each node were also derived (not shown).
Using the 0.8 correlation coefficient threshold from previous studies (McDonald et al., 2016; Tselioudis et al.,
2013), the nodes in the 5 ×3 SOM are all distinct.

The set of patterns represented in Figure 1 are very similar to those presented in Figure 1 of McDonald et al.
(2016) apart from the top left hand corner of the SOM. Similar to the SOM pattern detailed in McDonald et al.
(2016), we find that the top left node in the current SOM (node I1) is predominantly related to clouds with
high tops (low pressure) and moderate to high optical depths and that the bottom right node in the grid
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Figure 1. The SOM reference vectors displayed as joint histograms of cloud optical depth versus cloud top pressure, representing the 15 nodes derived by the
application of the SOM to International Satellite Cloud Climatology Project observations. The relative RFO and the TCC associated with each node in the SOM is
indicated in the legend above each histogram. Note the logarithmic color scale. SOM = Self-Organizing Map; RFO = relative frequency of occurrence; TCC = total
cloud cover.

(node I15) is related to low-level (high cloud top pressure) clouds with low to medium optical depths. Thus,
polar opposites in terms of cloud top pressure are observed at the ends of this diagonal. We also observe
that the cloud top pressure for the highest occurrence states increases from left to right in the grid, while
the optical depth decreases from top to bottom in the grid in a similar manner to that observed in the 5 × 3
SOM displayed in McDonald et al. (2016). The nodes at the four corners of the 5 × 3 SOM (I1, I5, I11, and
I15) and node I2 and I8 have the highest RFOs. We demonstrate that the difference observed between the
current SOM and that detailed in McDonald et al. (2016) represents a refinement of the previous classification.
One reason for the difference between the current SOM and the one displayed in McDonald et al. (2016)
appears to be associated with the longer period examined. However, the removal of histograms based on the
altitude mask appears more important. These criteria remove possible artifacts over about 7.5% of the Earth
surface from consideration with the excluded regions primarily confined to Antarctica, Greenland, and the
Himalayan plateau.

To further examine the representativeness of the SOM nodes, we compute the Pearson correlation coeffi-
cient between each node and all the individual joint histograms assigned to that node. Figure 2 displays the
distribution of these correlations for each node. A similar procedure has been used previously in synoptic
climatology studies by Feldstein and Lee (2014) and Gibson et al. (2017) to measure intracluster similar-
ity. Figure 2a displays the pattern correlations for the SOM nodes displayed in Figure 1 assigned using the
Euclidean distance between the SOM pattern and the 42 element vector of cloud amount for the joint his-
togram. Figure 2b displays the pattern correlations for the SOM nodes shown in Figure 1 in McDonald et al.
(2016) assigned using the same methodology. Comparison of Figures 2a and 2b shows that the median values
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Figure 2. Boxplots of Pearson correlations between representative patterns derived using the SOM methodology and all
the individual joint histograms assigned to these patterns. (a) represents the correlations between the SOM reference
vector displayed in Figure 1 and all the joint histograms assigned to that node based on Euclidean distance. (b)
represents the correlations between the SOM reference vector displayed in McDonald et al. (2016) and all the joint
histograms assigned to that node based on Euclidean distance. (c) represents the correlations between the SOM
reference vector displayed in Figure 1 and all the joint histograms assigned to that node based on the scheme detailed
in Williams and Webb (2009). Titles for each panel identify the lower and upper quartiles and the median for all
nodes/states. To enhance comparison, panels (b) and (c) include red crosses representing the median values displayed
in panel (a). SOM = Self-Organizing Map.

of the Pearson correlation distributions for the current SOM are similar or larger than those derived from the
SOM nodes identified in McDonald et al. (2016) for all the high RFO nodes apart from node I15 (I1, I2, I4, I5,
I8, I11, I13, and I14), while reductions in the median correlation coefficient for the new SOM are observed
for nodes I3, I7, and I12 which all have low RFO and are therefore less critical. This implies that the new SOM
has put less significance on nodes that represent transition states, a potential extra benefit. The median and
lower and upper quartiles derived across all nodes suggest that the current classification has higher intraclus-
ter similarity than that for the SOM detailed in McDonald et al. (2016), supporting our view that the current
SOM is a slight refinement. In an attempt to further improve our classification, we also examined whether
the assignment method detailed in Williams and Webb (2009) which uses the total cloud fraction and nor-
malized values of the mean cloud optical depth and cloud top pressure in the Euclidean distance assignment
metric produced a noticeable change in allocations. We found that the 42 vector Euclidean distance metric
(see Figure 2a) was preferable to the technique detailed in Williams and Webb (2009; see Figure 2c) when
judged using this intracluster similarity metric. In particular, very low correlations between the node patterns
displayed in Figure 1 and individual joint histograms assigned using the Williams and Webb (2009) technique
occurred more often than the direct technique.

The geographical distribution of the RFO for each node in the SOM is shown in Figure 3 and displays signifi-
cant similarities with Figure 3 in McDonald et al. (2016), this being particularly clear for nodes in the bottom
row of the SOM (I11–I15). Nodes I14 and I15 are both related to marine stratocumulus and stratus cloud decks
as in McDonald et al. (2016), with node I14 very similar to the open mesoscale cellular convection class iden-
tified in Muhlbauer et al. (2014) and node I15 connected to their closed mesoscale cellular convection class.
One of the weaknesses of the SOM technique detailed in McDonald et al. (2016) is that they form a gridded
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Figure 3. Geographic maps of the annual mean RFO (%) of the cloud types linked to the 15 nodes identified by the Self-Organizing Map displayed in Figure 1.
RFO = relative frequency of occurrence.

representation of a continuous data space which can sometimes cause data sparse regions to be represented
more strongly than in other clustering techniques. Nodes potentially related to transitions constitute a smaller
total percentage of the data than in McDonald et al. (2016; c.f. nodes 4, 6, 10, and 12 in McDonald et al., 2016,
with I3, I10, and I12 in the current CR).

Another problem identified in McDonald et al. (2016) was that node 1 represented a mix of histograms con-
nected to WS 1 to 3 from Tselioudis et al. (2013). This is problematic because these WSs relate to distinct
physical regimes (Tan et al., 2013; Tselioudis et al., 2013). The current SOM-derived CR separates high-level
clouds more effectively. In particular, the geographical pattern of node I1 displayed in Figure 3 bears a strong
resemblance to WS 3 in Tselioudis et al. (2013), while the node I2 geographical structure appears to be simi-
lar to WSs 1 and 2. WS 1 in Tselioudis et al. (2013) represents regions dominated by tropical deep convection
and cold frontal convection in the storm tracks, with WS 2 representing optically thicker clouds and lower top
heights almost exclusively associated with the midlatitude storm tracks. Tselioudis et al. (2013) identify that
WS 3 is dominated by high clouds of low to medium optical thickness that have higher cloud tops but have a
similar geographical distribution to WS 1. The close geographic association of WS 3 with tropical convection
indicates it represents the stratiform anvil clouds associated with mesoscale convective systems, cirrus cloud,
and some mixed isolated less organized and weaker convective cloud.

While overall our analysis shows the superiority of the new CR compared to that in McDonald et al. (2016),
close examination of Figure 3 also highlights an interesting problem with the CR formed. In particular, for node
I11 a linear feature is observed around the international dateline and after analysis this appears to be associ-
ated with the fact that the ISCCP information in this region is derived from two different satellite instruments,
namely MTS-1 and GOES-11 for the 2007–2008 period examined. Thus, the classification appears to highlight
a difference in the joint histograms from the two satellites. Marchand et al. (2010) have previously identified
that the sensitivity of satellite retrievals to multilayer clouds where the upper layer is optically thin can produce
significantly different joint histograms for different satellites. In particular, they identified that ISCCP retrieves
a cloud top height that is frequently biased into midlevels, whereas MODIS usually identifies the upper-level
cloud and MISR the lower cloud top. We believe that the different satellites derivation of the joint histogram
is the problem in this case because the ISCCP FD data set does not display this discontinuity and this data
set includes information from the lower-level data set. This means that the radiative patterns associated with
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Figure 4. The median (thick black line) and interquartile ranges (thin black lines) for the vertical profiles of the pressure vertical velocity (hPa/hour) for each node
in the Self-Organizing Map. Negative values correspond to ascending motion and positive values to descending motion.

the different patterns are rather similar. We should also identify that an examination of the previous CR in
McDonald et al. (2016) and the WSs detailed in Tselioudis et al. (2013) shows a similar discontinuity (not shown)
in WSs 5 and 6 for this period.

To test the utility of the new SOM, we create composite median vertical velocity profiles in Figure 4. Similar to
results in McDonald et al. (2016), we find that the various SOM nodes display a distinct structure with a shift
from profiles dominated by positive (descent) to negative (ascent) pressure vertical velocities as we move from
right to left in the SOM (see Figure 4). The top left node in Figure 9 in McDonald et al. (2016) was predominantly
related to large negative pressure vertical velocities (connected to upward motion) with a maximum value at
around 400 hPa and was associated with clouds with high cloud tops. The bottom right node in McDonald
et al. (2016) was related to positive vertical velocities throughout the profile and was therefore linked to a
region of strong descent and low-level clouds. A gradual shift from positive (descent) to negative (ascent) ver-
tical velocities moving from right to left in that SOM structure was also clear. These characteristics are largely
reproduced in the refined ISCCP classification. The most obvious difference between the patterns is that node
I1 is no longer related to the highest ascent rates, which are now connected to node I2. This makes sense
when we consider that the WS in Tselioudis et al. (2013) roughly corresponding to node I1 represents a mix-
ture of the stratiform anvil clouds portions of mesoscale convective clouds and cirrus cloud. This feature also
corresponds with results in Tselioudis et al. (2013) which showed that these clouds were connected to upward
motion, but were not connected to the highest upward vertical velocities. Node I2 in Figure 4 is therefore
connected to the largest negative vertical velocities (highest ascent rates) which also show correspondence
with the patterns in Tselioudis et al. (2013; WSs 1 and 2). Thus, the ordering of Figure 4 is physically mean-
ingful. Interestingly, while the joint histograms and geographical distribution of the occurrence frequency for
nodes I4 and I5 are rather similar, the vertical velocity profiles are quite well separated which highlights that
this subtle variation in Figure 1 is connected to meteorological state.

Leinonen et al. (2016) identified that there can be significant variability within specific clusters in a CR which
is linked to the different clusters representing different types of clouds in different regions. Regional radia-
tive differences between ISCCP WSs were also highlighted by Oreopoulos and Rossow (2011) and suggest
this might be a universal feature of CRs. Leinonen et al. (2016) hypothesized that this results from the variable
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Figure 5. Geographic maps of the mean anomaly pressure vertical velocity at 500 hPa normalized by the standard deviation for the 15 nodes identified by the
Self-Organizing Map displayed in Figure 1 and the mean pressure vertical velocity for the period 2007 to 2008 inclusive, again normalized by the standard
deviation. Regions where the relative frequency of occurrence of the node is below 5% are not displayed to improve clarity.

meteorological environments producing different cloud structures, which nevertheless have similar signa-
tures in passive measurements. To examine their hypothesis, we display maps of the mean anomaly pressure
vertical velocity at 500 hPa normalized by the standard deviation for each node in the SOM (see Figure 5) to
determine whether the variability displayed in Figure 4 is related to regional differences. Inspection of Figure 5
shows very clear ordering with the global pattern dominated by large negative vertical velocity anomalies in
node I1 and large positive vertical velocity anomalies for node I15. However, within each node notable vari-
ability across the globe does exist. In particular, the largest negative vertical velocity anomalies in node I2
occur over the ocean in the Pacific warm pool, the South Pacific and South Atlantic convergence zones, and the
Indian Ocean, with weaker negative vertical velocity anomalies over the midlatitude storm tracks. For nodes
I14 and I15, regional variability means that stronger positive vertical velocities (subsidence) occur over the
tropics and near zero velocity anomalies are observed at higher latitudes. These results support the proposi-
tion that regional variability is partially determined by changes in the meteorological environment. The fact
that there are distinct geographical structures in each nodes, map further supports this claim.

4.2. DR Analysis
We have previously identified the relationship between ERA-Interim pressure vertical velocity profiles and
CRs derived via application of the SOM technique to the ISCCP D1 data set (see Figure 4). In addition to this
approach, research has characterized cloud systems based on DRs under the assumption that they influence
cloud formation. Oreopoulos et al. (2017) identify that𝜔500 is a commonly used meteorological indicator of the
dynamic state of the atmosphere, but that work examined full profiles of 𝜔 to be thorough. We therefore take
this idea a step further and apply the SOM technique to pressure vertical velocity profiles from ERA-Interim
reanalyses. Given that studies have shown the importance of LTS for low-level cloud (Klein & Hartmann, 1993),
we could also have used this variable (among others) in our cluster analysis. However, we choose to form our
DR using only variations in the pressure vertical velocity. This decision is partly associated with the distinct
changes in this variable for different cloud types identified in McDonald et al. (2016), but also because the use
of a mixture of meteorological variables in a SOM framework introduces an inherent assumption. In particular,
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Figure 6. The dynamical regime SOM reference vectors displayed as vertical profiles of the pressure vertical velocity (hPa/hour) for each node in black, and gray
lines identify the vertical velocity profiles connected to all the other nodes for reference. These patterns represent the 12 dynamic regime nodes identified by the
SOM technique applied to the ERA-Interim pressure vertical velocity data. The RFO associated with each node in the SOM is indicated in the legend above each
histogram. Note that negative values correspond to ascending motion and positive values relate to descending motion. SOM = Self-Organizing Map;
RFO = relative frequency of occurrence.

the common practice of normalization of all inputs into a multivariate SOM effectively introduces the assump-
tion that the various variables are of the same importance. Applying a weighting scheme to address the
normalization bias would also require the precise nature of the relative importance of the different variables
to be known which is clearly a difficult task for the wide range of cloud types examined. McDonald et al. (2016)
also display less consistency between the LTS and the total columnar water vapor to specific nodes, though
studies such as Jiang et al. (2012) and Su et al. (2013) have shown the strong relationship between moisture
metrics and CRs. We also note that work detailed in Nam and Quaas (2013) suggests that a multiparameter
scheme may not improve the relative quality of the results. In particular, Nam and Quaas (2013) found that the
identification of low-level cloud using a DR approach using vertical velocity and LTS is insufficient to distin-
guish between stratocumulus and shallow cumulus clouds. Additionally, work detailed in Taylor et al. (2015)
used both 𝜔500 and LTS to identify atmospheric state regimes, but still observed significant regional variabil-
ity in cloud properties within each regime. This suggests that a wide range of dynamic or thermodynamic
variables are likely required, and for the sake of simplicity we choose to only use the pressure vertical veloc-
ity profile in the current study. This means that this study will not be definitive, but it allows us to define a
methodology that can be used for later more comprehensive analyses.

Figure 6 displays characteristic profiles of the pressure vertical velocity derived from 6-hourly global output
for the 2007 and 2008 calendar years for regions with topography below 1,000 m above sea level using the
SOM technique. These factors were selected to ensure identical sampling to that used in the CR analysis. Test-
ing of various configurations and examining ancillary information, such as the geographical distribution of
the various states, the Sammon map of the SOM (not shown) and the correlations between the geographic
RFO maps for the different nodes suggest that the 5 × 3 SOM used for the CRs is not optimal in this case.
In particular, individual nodes within the 5 × 3 SOM have correlations above the 0.8 threshold used in pre-
vious studies. This suggests that the vertical velocity profiles contain less independent information than the
ISCCP joint histograms, this likely identifies that the simple DR scheme derived cannot be as helpful a classifi-
cation. This lack of independence means that we use a 4 × 3 SOM for the vertical profiles of pressure vertical
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Figure 7. Geographic maps of the annual mean RFO (%) of the vertical velocity profiles linked to the 12 dynamic regime nodes identified by the Self-Organizing
Map displayed in Figure 6. RFO = relative frequency of occurrence.

velocity to optimize the DR analysis. An analysis using a 5× 3 SOM might have been more directly comparable
to the CR, but disadvantages the statistical analysis of the DR scheme and thus was not considered. Exam-
ination of Figure 6 shows that the most negative vertical velocities (linked to ascent) occur in the left hand
column of the SOM and that the most positive vertical velocities (linked to descent) occur in the right hand
column of the SOM. Comparison of node 𝜔1 (top left) and node 𝜔12 (bottom right) shows they are near mir-
ror images with the largest magnitude vertical velocities occurring at around 400 hPa. The lowest magnitude
vertical velocities occur in the center of the SOM grid. Profiles with their highest magnitude positive and neg-
ative vertical velocities at higher pressures (near 800 hPa) are observed in the top right (node 𝜔4) and bottom
left (node 𝜔9) of the grid, respectively. The SOM grid therefore displays a distinct ordering, as expected using
this methodology.

Figure 7 displays the geographical distribution of the RFO of the DR nodes. Figure 7 shows some similarities
with the patterns displayed in Figure 1, for example, node 𝜔1 in the ERA-Interim derived SOM (node 𝜔1 in
Figure 7) looks rather similar to that for node I1 or node I2 in the ISCCP derived SOM (see Figure 1) around the
tropics. This relationship highlights that regions of ascent are observed predominately in the regions where
convection occurs commonly. Similarly, the regions of subsidence in Figure 7, linked to the rightmost column
in the SOM, are preferentially related to regions in Figure 1 linked to low-level cloud.

To quantify the relationship between cloud observations and the DR classification, the mean ISCCP joint his-
tograms composited based on assigning data to the DR nodes are displayed in Figure 8. Figure 8 exhibits a
clear ordering with the top left node in the SOM (node 𝜔1) linked to clouds with high tops (low pressure) and
moderate to high optical depths and the bottom right node in the grid (node 𝜔12) related to low-level (high
cloud top pressure) clouds with low to medium optical depths. This structure is quite similar to the CR pattern
observed in Figure 1. Though, the absence of a clear-sky state is notable with the lowest cloud cover being
associated with node 𝜔11 at 56.1%. The ordering in Figure 8 suggests that the vertical velocity profile is an
important determinant of the cloud top pressure as might be expected. Examination of the mean TCC for each
node for the DR classification identifies a much smaller range of values than that for the CR. Inspection indi-
cates that this results from very high cloud covers and clear skies being mixed in with the overall tendency.
The standard deviation of the bins in each joint histogram (not shown) also displays much higher values than
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Figure 8. International Satellite Cloud Climatology Project joint histograms of cloud optical depth versus cloud top pressure, representing the 12 nodes
identified by the Self-Organizing Map shown in Figure 6. The RFO and the TCC associated with each node in the Self-Organizing Map is indicated in the legend
above each histogram. Note the logarithmic color scale. RFO = relative frequency of occurrence; TCC = total cloud cover.

those related to the CR (also not shown). This is unsurprising as we know that many factors influence cloud for-
mation. However, if vertical velocity was a key determinant of cloud structure, it would theoretically be more
efficient to classify on that variable than to classify on the cloud data. Thus, while our analysis suggests that
the DR scheme can be used to composite specific cloud characteristics, there appears to be a greater ambigu-
ity in this classification than using a CR classification. This ambiguity likely reflects the inherent assumptions
connected with classifying cloud using the DR approach.

We inspect the intracluster similarity of the DR by computing the correlation between the mean joint his-
tograms displayed in Figure 8 and all the individual joint histograms assigned to that node. Figure 9a displays
the distribution of these pattern correlations for each node, examination shows that the median values for
the DR SOM are always below 0.5 and the median value for all nodes is 0.37. These values are smaller than
those for the CR classification shown in Figure 2. To ensure that the clustering is not at fault, Figure 9b displays
the correlation between the representative pressure vertical velocity profiles (shown in Figure 6) and the indi-
vidual pressure vertical velocity profiles assigned to that node. Examination of Figure 9b proves that the SOM
methodology has produced an accurate clustering with high intracluster similarity in each node, with the
exception of node 𝜔7. Thus, the intracluster variability observed when inspecting corresponding cloud data
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Figure 9. Boxplots of Pearson correlations for representative International Satellite Cloud Climatology Project joint
histograms patterns derived using ERA-Interim pressure vertical velocity profiles and all the individual joint histograms
assigned to these patterns (a). Similarly, boxplots of Pearson correlations for representative nodes derived from the
ERA-Interim vertical velocity profiles patterns relative to individual ERA-Interim pressure vertical velocity profiles.
SOM = Self-Organizing Map.

reflects the assumptions connected with the DR classification, namely that cloud formation is only controlled
by the pressure vertical velocity profile in this case.

4.3. Contingency Table Analysis
In an effort to determine the level of influence of the meteorological environment on cloud formation and
the association between the two classifications, we compare the DR and CR SOMs in a contingency table.
The contingency table in Figure 10 allows us to identify which cloud states are most strongly impacted by
the pressure vertical velocity profile. The values displayed represent the difference between the number of
observations classified in a specific ISCCP and vertical velocity derived node and the expectation value for that
combination, defined in Press et al. (1992), divided by the expectation. Thus, red squares represent observa-
tions which are more common than the expectation and blue squares represent observations which are less
common than the expectation.

Examination of Figure 10 shows that nodes I1–I4 in the CR have higher occurrences than the expectation
for the nodes in the left hand column of the DR SOM. This demonstrates that the nodes connected to ISCCP
observations with high cloud tops are strongly connected to vertical velocity profiles with high ascent rates.
Inspection also shows that ISCCP nodes I1–I4 occurrence rates are significantly lower than the expectation
for nodes in the DR classification connected to regions of subsidence (𝜔8 and 𝜔12). We also find that nodes
I13–I15 in the CR are preferentially observed during periods linked to the right hand column of the DR (nodes
𝜔4, 𝜔8, and 𝜔12) suggesting these nodes are strongly related to subsidence. This clearly concurs with results
previously reported in Figures 4 and 8. We also find that other nodes in the CR classification, particularly the
nodes connected to nodes I7, I8, and I9 are not strongly connected to any specific DR node. Calculation of
Cramer’s V metric, which varies between zero and one with zero representing no association and one repre-
senting perfect association between the two classifications, is 0.16 which represents little association between
the CR and DR schemes (Press et al., 1992). Calculation of the dependency also detailed in Press et al. (1992) is
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Figure 10. Anomalous relative frequency of occurrence (% relative to that expected) of node combinations for the
ISCCP- and 𝜔-derived SOMs. ISCCP = International Satellite Cloud Climatology Project; SOM = Self-Organizing Map.

only 0.0532 which again identifies little association. Therefore, we observe little association statistically which
suggests that the dynamic and CRs formed are largely independent.

4.4. CRE Analysis
To test the regional variability in the CR and DR schemes, we display maps of the normalized difference
between the mean LW CRE for a particular node at a specific position (CRELWn(𝜃, 𝜙)) and the global mean LW
CRE, ΔCRELWn, defined as

ΔCRELWn =
CRELWn(𝜃, 𝜙) − CRELWn

𝜎(CRELW)
, (2)

where 𝜃 is latitude, 𝜙 is longitude, overbars denote means, 𝜎(CRELW is the global standard deviation of the LW
CRE for all nodes, and the n subscript is associated with that node in the classification. The other symbols used
are identical to their usage in equation (1). Titles for each panel identify the global mean LW CRE (CRELWn) for
each node. This variable identifies whether there is a large spread from the (CRELWn) across the globe.

The geographic map of ΔCRELWn for the CR is displayed in Figure 11, the values of LW CRE used in the analysis
are calculated from the ISCCP FD data set as detailed in section 2. The global mean LW CRE for the nodes in the
CR vary between 5 and 73 W/m2 in this analysis is quite similar to the range displayed in McDonald et al. (2016).
Examination of the distribution of SW and LW CRE for each node (not shown) also displays a rather similar
pattern to that shown in Figure 11 of McDonald et al. (2016). Inspection ofΔCRELWn in Figure 11 shows that the
largest regional variability occurs in nodes I1, I2, and I11. These three nodes are all associated with high cloud
top cloud and display a strong latitudinal variability which corresponds to lower cloud top pressures (higher
altitude cloud tops) at the equator and higher cloud top pressures (lower altitude cloud tops) at midlatitudes.
The variability in ΔCRELWn is small in all the other nodes, but does show some signs of the same latitudinal
variation in nodes I4, I5, and I6.

The regional variability identified in nodes I1, I2, and I11 seems likely to be associated with variations within
those cloud classes linked to changes in tropopause altitude and has a similar scale to that in Leinonen et al.
(2016). There is also some evidence of a relationship between high ascent rates (see Figure 5) and high cloud
tops (see Figure 11), for example, in node I2 in the Pacific warm pool. Thus, the CR created from ISSCP D1 data
appears to perform well with understandable regional variability in a limited number of nodes. The CR classifi-
cation also displays little variability in most nodes in LW CRE highlighting a physically meaningful classification
which is highly self consistent within most nodes.
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Figure 11. Geographic maps of the normalized difference between the LW CRE for a particular node and the mean LW CRE for all 15 nodes identified by the
Self-Organizing Map displayed in Figure 1. Regions where the relative frequency of occurrence of the node is below 5% are not displayed to improve clarity.
CRE = Cloud Radiative Effect; LW = longwave.

Geographic maps of the ΔCRELWn for the DR scheme are displayed in Figure 12. Figure 12 shows significant
variability in the ΔCRELWn measure in nearly every node, with node 𝜔8, 𝜔11, and 𝜔12 displaying the small-
est variability. The largest regional variability is observed in nodes 𝜔1, 𝜔5, and 𝜔9 (the nodes in the left hand
column of the DR SOM) which are linked to high-level clouds. In comparison to the variability displayed in
Figure 11, many more nodes show sizable variations. Note that the geographic maps in Figures 11 and 12 are
normalized to the same value of 𝜎(CRELW and are therefore directly comparable. The pattern of the regional
variability observed is similar for every node with only the magnitude of the variability changing, this iden-
tifies a less focused relationship between the DR derived SOM and the LW CRE metric. Figure 12 is also more
complex than that in Figure 11 and appears similar to the mean LW CRE (CRELW ) suggesting that the DR
classification does not separate out LW CRE efficiently.

Geographic maps of the normalized difference between the SW CRE at a specific position for a particular node
and the global mean SW CRE are shown in Figures S1 and S2 of the supplementary information. In this case,
the range of CRESWn for the current CR is −24.2 and −238 W/m2, while for the DR this range is only −34.7 and
−77.9 W/m2. Thus, the nodes in the DR scheme do not appear to show the range observed in previous studies
(McDonald et al., 2016; Oreopoulos et al., 2014, 2016). Examination of this metric shows very high variability
for nodes I1, I2, I4, I5, and I15 in the CR and sizable, but smaller variability than the CR, in nearly every node of
the DR. We interpret this as suggesting a weaker linkage between the CR and SW CRE variations, but almost
no linkage between the SW CRE at any specific point and the DR classification.

4.5. CloudSat Analysis
Limitations of the ISCCP data set introduce uncertainties in cloud top pressure in situations with optically thin
or multiple-layer clouds. Thus, CRs derived from ISCCP observations may inherently contain biases as identi-
fied in work by Chen and Del Genio (2009) and Mace and Wrenn (2013). We examine whether this uncertainty
impacts the relative efficacy of the current CR and DR classifications by compositing CloudSat observations
assigned to the nodes in those classifications. We construct reflectivity-altitude joint histograms in 2.5∘ by
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Figure 12. Geographic maps of the normalized difference between the LW CRE for a particular node and the mean LW CRE for all 12 nodes identified by the
Self-Organizing Map displayed in Figure 6. Regions where the relative frequency of occurrence of the node is below 5% are not displayed to improve clarity.
CRE = Cloud Radiative Effect; LW = longwave.

2.5∘ latitude-longitude bins using CloudSat observations from 2007. As the ISCCP CRs are only available dur-
ing the day, the CloudSat observations were also restricted to daytime measurements in order to ensure
synchronous observations. We normalize the reflectivity-altitude joint histograms such that the sum of the
histogram counts is proportional to the total cloud fraction measured in a similar manner to that detailed
in Leinonen et al. (2016). This procedure enables us to distinguish not only between different distributions
of reflectivity and altitude, but also between regimes that have similar reflectivity-altitude distributions with
different amounts of cloud. These joint histograms were generated using the radar reflectivity data in the
2BG4 CloudSat product (Mace et al., 2009). CloudSat observations were only composited in this analysis when
greater than 6 hr of ISCCP D1 data or ERA-Interim output were consistently allocated to a specific node.

Figure 13 displays the reflectivity-altitude joint histogram for each node in the CR. Examination of the joint
histograms displays a clear ordering which is in line with previous discussion. In particular, the top left of the
5× 3 SOM (node I1) is predominantly related to high-level clouds, while the bottom right of the SOM is related
to low-level cloud. Node I1 appears to be associated with high-level cloud in the altitude range 12–14 km
primarily, with some signs of potentially deeper cloud. Our earlier interpretation that node I1 represents strat-
iform anvil clouds associated with mesoscale convective systems and cirrus cloud appears to be supported
by the CloudSat observations. Nodes I6 and I11 also appear to be related to cirrus. Nodes I2 to I5 are related
to deep cloud with high cloud tops (of varying heights) likely related to the storm tracks. While node I8 is very
obviously related to clear-sky conditions. Finally, nodes I14 and I15 are associated with low-level thin cloud
and their geographic position (see Figure 3) further characterizes them as being associated with stratocu-
mulus and stratus cloud decks. The inability of CloudSat to resolve cloud below 1 km due to ground clutter
(Mace et al., 2009) likely means that the cloud fractions associated with these types are underestimated. In
particular, the MODIS and ISCCP cloud covers linked to these nodes are significantly higher than the values
derived from CloudSat. Overall, Figure 13 demonstrates that the current CR produces CloudSat composites
which correspond well to the interpretations identified using the ISCCP observations. In fact, comparison of
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Figure 13. Global mean joint histograms of reflectivity by altitude for each of the International Satellite Cloud Climatology Project-derived cloud regimes. Each
histogram is normalized such that the sum of the counts is proportional to the cloud fraction. The CloudSat-derived cloud fraction is also shown for each regime.

Figure 13 with Figure 3 in Leinonen et al. (2016) suggests that this classification may be less ambiguous than
that previous study.

Figure 14 displays reflectivity-altitude joint histograms for each node in the DR. The CloudSat joint histograms
for the various nodes show patterns that match with previous interpretation of Figure 8. In particular, the
top left node (node 𝜔1) is connected to high-level cloud and the bottom right node (node 𝜔12) is related to
low-level clouds. However, the various CloudSat joint histograms are more similar to each other than those in
the CR classification (cf. Figures 13 and 14). There is also an absence of a clear-sky node and nodes connected
to cirrus, thus this classification appears to produce a less distinct set of classes than those derived from the
CR scheme. Correlation coefficients between the composite CloudSat joint histograms for different nodes
can be used to derive statistics using the various permutations, these statistics being displayed in Table 1.

Table 1
Statistics of Correlation Coefficients Between the Composite CloudSat Joint
Histograms for the Different Nodes in the Cloud and Dynamic Regimes

Cloud regime Dynamic regime

Minimum −0.74 −0.56

Lower quartile −0.17 0.25

Median 0.01 0.59

Upper 0.61 0.82

Maximum 0.97 0.96
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Figure 14. As in Figure 13 except for the dynamic regimes derived from ERA-Interim pressure vertical velocity data. TCC = total cloud cover; ISCCP = International
Satellite Cloud Climatology Project.

Examination of the statistics in Table 1 shows that the median correlation between nodes in the CR (0.01) is
very much smaller than that for the DR (0.59) which clearly identifies that the CR classification covers a wider
range and more distinct set of cloud types than the DR scheme. The minimum and lower and upper quartiles
also display the same pattern. However, the CloudSat composites with the maximum correlation is higher for
the CR than the DR suggesting that two of the CloudSat joint histograms derived for the different CR nodes
are very highly correlated. Inspection indicates that this correlation is linked to nodes I6 and I11, however the
TCC derived from CloudSat is significantly larger in node I6 compared to I11 (42.6% to 32.8%, respectively),
and thus these two nodes appear to be scaled versions of each other. Correlations between individual node’s
CloudSat joint histograms and the global average CloudSat joint histogram were also examined, the lower
and upper quartiles of these correlations for the CR were 0.19 and 0.89, while those for the DR were 0.74 and
0.87. Thus, the range of these correlations is significantly greater for the CR than DR relative to the global mean
pattern again suggesting that the CR representation characterizes a wider range of cloud types.

5. Discussion and Conclusions

In this study, we created a CR classification derived from ISCCP D1 observations using the SOM clustering tech-
nique and also produced a DR classification using the same clustering methodology applied to ERA-Interim
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pressure vertical velocity profile output. Our results show that the CR created in this study is a refinement
of that previously discussed in McDonald et al. (2016). In particular, we used the distribution of Pearson cor-
relation coefficients between the representative CR node patterns and the data assigned to each node (see
Figure 2) as an intracluster similarity metric and showed that the CR developed has higher intracluster simi-
larity than the classification in McDonald et al. (2016). Analysis of that intracluster metric also suggests that
the attribution of specific joint histograms using the 42 element vector Euclidean distance metric is prefer-
able to the technique detailed in Williams and Webb (2009). An examination of the pressure vertical velocity
profiles relationships to nodes in that CR (see Figure 4) also exhibits a clear ordering and clusters connected
to high-level cloud are now more consistent with previous studies (Tan et al., 2013; Tselioudis et al., 2013). We
have also demonstrated that the pressure vertical velocity at 500 hPa associated with each CR node displays
clear ordering (see Figure 5) and that vertical velocity is an important driver of the observed cloud properties
as we might expect. However, each CR node displays intracluster variability to varying degrees which supports
the hypothesis in Leinonen et al. (2016) that variations in cloud properties within clusters are driven by mete-
orological variations. For example, the normalized vertical velocity anomalies at 500 hPa shown in Figure 5
display coherent patterns with the geographical variation in LW CRE for each node displayed in Figure 11.

Examination of independent data composited based on the CR classification also shows the quality of the
current CR. In the spirit of work detailed in Leinonen et al. (2016), we examined the regional variation within
nodes connected to the CR classification using normalized values of the LW CRE derived from ISCCP FD data.
Examination of Figure 11 clearly shows regional variability is observed. However, the geographic variation
in the normalized LW CRE is relatively small in most nodes for the CR scheme. We attribute the variabil-
ity in the remaining nodes to latitudinal changes in the height of the tropopause. An interpretation driven
by the predominantly latitudinal variability in the high cloud top states in the CR scheme in Figure 11.
Composites of CloudSat data shown in Figure 13 demonstrate that the CR scheme produces representative
reflectivity-altitude joint histograms which correspond well to the interpretations identified using the ISCCP
observations alone further supporting the usefulness of this classification. One problem with the CR scheme
is the potential for different satellites outputs to mean that CR classifications include instrumental artifacts, for
example the discontinuity near the international date line in node 11 of the CR (see Figure 3), this is currently
the subject of follow-up work.

The DR classification derived solely from ERA-Interim pressure vertical velocity output produces a set of RFO
geographical maps (see Figure 7) which have similar features to those derived using the CR scheme (Figure 2).
Figure 8 also displays composites of the ISCCP D1 joint histograms associated with the DR nodes (Figure 6) and
shows a clear ordering with largest negative pressure vertical velocities (connected to ascent) being related to
clouds with high tops (low pressure) and those linked to subsidence connected to clouds with low tops (high
pressures) in the ISCCP composites. This displays the general utility of the DR scheme for cloud classification.
However, analysis of the DR classification suggests weaknesses relative to the CR classification. In particular,
our measure of intracluster similarity suggests that the DR methodology does not produce as coherent a
classification as the CR scheme when examining correlations in the ISCCP D1 data set (see Figures 2a and 9a).
This is despite analysis in Figure 9b which suggests that the DR classification is sound when we examine the
representative pressure vertical velocity profiles against profiles assigned to a specific DR node.

Comparison of independent data sets also identifies the poorer performance of the DR scheme. In particular,
Figures 11 and 12 shows that the geographic variation in the normalized LW CRE for specific DR nodes is very
large compared to that for the CR scheme. This result implies that the DR scheme produces less distinct cloud
groupings with a large spread of LW CRE when compared to the CR clusters. Analysis of the DR composite
CloudSat reflectivity-altitude joint histograms (see Figure 14) also shows a narrower range of distinct cloud
types, with no composites connected to clear skies or cirrus cloud. The CloudSat composites for the DR scheme
are also considerably less independent than those from the CR scheme (see Table 1), highlighting that when
the results of the two schemes are compared with independent cloud data, the CR classification outperforms
the DR scheme.

The results in Figure 10 in McDonald et al. (2016) show that changes in LTS, 𝜔, and the Total Column Water
Vapor all potentially have a relationship with the cloud type observed, as might be expected based on pre-
vious studies. However, we choose to form our DR using only variations in the pressure vertical velocity. This
decision was partly associated with the distinct differences in this variable identified in McDonald et al. (2016),
but also because the use of a mixture of meteorological variables in a SOM framework would cause an inherent
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assumption in our analysis. In particular, the use of multiple variables requires either normalization or weight-
ing of the various meteorological parameters and ingrains an inherent assumption on the relative importance
of various variables into our analysis. The results presented are therefore clearly not definitive as any classifica-
tion can be enhanced. Further work will therefore attempt to develop a DR classification with a wider range of
meteorological parameters to determine whether the DR classification can be improved. However, we would
argue that these results represent a comparison between a CR and DR classification of similar complexity. In
particular, given studies which have simply used the vertical velocity at 500 hPa, we would argue that our
scheme is a useful starting point.

Analysis of the contingency table in Figure 10 shows little association between the CR and DR schemes.
Though, nodes I1–I4 in the CR, displayed in Figure 1, have higher occurrences than the expected value for
vertical velocity regimes connected to the left hand column of the SOM displayed in Figure 6 (𝜔1, 𝜔5, and
𝜔9). Thus, the nodes connected to ISCCP observations with high cloud tops are strongly connected to verti-
cal velocity profiles with high ascent rates. A result that is supported by Figure 12, which suggests that the DR
scheme performs better in regions of ascent. We interpret this as reflecting the fact that other factors such as
the LTS and the availability of water vapor are likely more important in regions of subsidence.

Given the lack of association between the two schemes, further work could focus on the development of
hybrid schemes and the analysis of data using both schemes. For example, Williams and Bodas-Salcedo (2017)
argue that the best way to minimize issues around compensating model errors, observational error and
model-observation comparison issues, is to routinely evaluate cloud in GCMs against a comprehensive set of
different observational data sets, using satellite simulators where appropriate and using a range of diagnos-
tic techniques. The fact that the DR and CR appear to have different strengths relative to cloud observations
suggests that the use of multiple schemes adds value. In addition, the DR and CR analysis provides indepen-
dent information which suggests that two stage classifications using cloud observations and meteorological
data could be of high value. Gryspeerdt et al. (2017) have also advocated for the combination of dynamical
and CRs and the utility of this approach.

The analysis presented in the current study suggests that the two schemes are largely independent and
combinations of these classifications could add value to existing methodologies. However, if only one
methodology is to be used to examine cloud properties then a CR approach is preferable based on inter-
nal consistency within the clusters when compared to the DR derived from the vertical velocity profile alone
(c.f. Figures 2 and 8). Comparison with two independent data sets, ISCCP FD and CloudSat, also supports this
conclusion for a DR scheme that includes only vertical velocities.
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